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Visual Cascade Analytics of Large-scale
Spatiotemporal Data

Zikun Deng, Di Weng, Yuxuan Liang, Jie Bao, Yu Zheng, Tobias Schreck, Mingliang Xu, and Yingcai Wu

Abstract—Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by
following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such
cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics.
Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual
analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer
and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges, 1)
generalized pattern inference, 2) implicit influence visualization, and 3) multifaceted cascade analysis. For the first challenge, we adapt
the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably
inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to
support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a
novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We
demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air
pollution datasets with domain experts.

Index Terms—Spatial cascade, pattern mining, spatiotemporal data.
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1 INTRODUCTION

MANY spatiotemporal events, such as air pollution and
traffic congestion, can propagate across space and

time via cascading patterns [25], [28]. For example, the
occurrences of air pollution at location A may result from
the pollutants spread from location B, while air pollution
at location B, in turn, may depend strongly on whether
location C is polluted. Studying such cascading patterns
presents valuable implications in helping urban data ana-
lysts understand the propagation of spatiotemporal events
and develop informed countermeasures to improve urban
transportation [28], [70], environment [74], and public in-
frastructures [29], [38], [51].

Efforts have been devoted to studying the inference [27],
[33], [41], [74] and visualization [11] of frequent propagation
patterns based on massive spatiotemporal data. However,
the frequent propagation patterns are different from cas-
cading patterns because the cascading patterns characterize
the strong dependencies among several locations and these
patterns may be infrequent. To reveal such spatiotemporal
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dependencies, Liang et al. [28] proposed CasInf, a novel
method that infers the cascading patterns of traffic conges-
tion diffusion in road networks. However, since this method
is tailored for periodic traffic data, two limitations are ob-
served: CasInf a) operates on discretized time intervals and
is inapplicable to inferring cascading patterns from general
spatiotemporal data and b) ignores the duration of time
when one location is influencing another although time is
a crucial factor involved in the cascade analysis [70], [75].
Furthermore, the inferred cascading patterns can be difficult
to comprehend and relate back to the original spatiotempo-
ral context due to their probabilistic and uncertain nature.
Effective verification and interpretation of these patterns de-
mand well-designed integration of automated approaches’
computational power and analysts’ domain knowledge.

These limitations motivate us to develop a visual analyt-
ics system that infers the cascading patterns from massive
spatiotemporal data and interprets these patterns by vi-
sualizing the implicit dependencies among spatiotemporal
events. Developing such an approach poses the following
three challenges:
Generalized pattern inference. To correctly infer the cas-
cading patterns, time should not be partitioned as the ap-
proach used by Liang et al. [28] because this time discretiza-
tion may break cascades and lead to incomplete results.
The proposed method should also incorporate the influence
durations to capture the reliability of the inferred patterns.
Implicit influence visualization. The influences among lo-
cations cannot be observed directly. Hence, the cascading
patterns inferred based on these numerous implicit influ-
ences are inherently probabilistic and uncertain. Pattern
analysis requires visualizing the influences with a scalable
and uncertainty-aware visualization.
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Multifaceted cascade analysis. Multiple analytical require-
ments demand that the cascading patterns and cascades
of events are appropriately organized in terms of spatial
topology and temporal occurrences to facilitate efficient
exploration. Designing an analysis interface that comprises
flexible interactions and coordinated visualizations to sup-
port the requirements constitutes the third challenge.

We propose VisCas, a visual analytics system that tightly
integrates an automatic mining module and interactive vi-
sualizations to address the three challenges. For the first
challenge, we adapt network inference techniques [15], [28]
to general urban domains and infer cascading patterns.
The extended method incorporates the influence durations
and expands its applicability to general urban scenarios
by avoiding time partitioning. For the second challenge,
we formulate the uncertainties in pattern inference and
design compact and intuitive visualizations for massive
implicit influence processes. For the third challenge, we
design a set of coordinated visualizations and develop an
interactive interface to facilitate location navigation, influ-
ence inspection, and cascading exploration. Specifically, a
three-fold optimization approach is proposed to provide a
legible visual summary of the cascading patterns and their
influence processes in a novel table-based visualization. The
contributions of this study are summarized as follows.
⇧ We adapt a network inference technique to cascading

pattern mining in general urban domains.
⇧ We design a table-based influence view with a three-fold

optimization to visualize massive implicit influences.
⇧ We develop a visual analytics system called VisCas by

integrating the mining algorithm and a set of effective vi-
sualizations to enable analysts to analyze spatial cascades
interactively.

⇧ We evaluate our network inference approach and VisCas
with case studies on two different real-world datasets.

2 RELATED WORK

This section reviews previous studies on urban visualization
and spatial propagation analysis.

Urban visualization [7], [73] has been widely studied for
various urban data, such as human mobility [42], [56], [68],
public infrastructure [16], [44], [61], [67], environments [1],
[47], [50], and social media [4], [6]. Researchers have also
attempted to combine automated algorithms with visual-
ization techniques to obtain valuable knowledge hidden
behind urban data [12], [19], [30], [31], [60], [62].

Among these studies, we focus on the part related to
visual propagation analysis. Wang et al. [58] proposed the
first visualization technique to analyze the individual prop-
agation graphs of traffic congestion. Pi et al. [45] leveraged
traffic flow and information theories to analyze the cause
and influence of traffic congestion. However, these two
studies only analyzed the processes that were individually
observed within a short period and may even be outliers.
They fail to capture the inherent and reliable relationships of
locations. Considering long-term observations, Li et al. [26]
developed COPE to extract and visualize the event co-
occurrences that frequently occur in location pairs to infer
latent influences. However, COPE failed to capture the
complex relationships (e.g., network) of multiple locations.

Deng et al. [11] developed AirVis to visualize the frequent
propagation processes of air pollution based on frequent
subgraph mining. Although AirVis and COPE summarized
numerous influences, they considered only the frequent
occurrences but not the dependencies between locations to
disclose probabilistic and uncertain cascades.

Spatiotemporal visualizations can be generally classi-
fied into two categories [54], namely, integrated views that
compactly display the spatial and temporal information
simultaneously [21], [32], [64], [65], and linked views that
require the costs of interactions and context switching but
are effective in multifaceted analyses [13], [37], [57]. The
cascading patterns and cascades in our study are informa-
tive in terms of spatial context, uncertainties, and temporal
dimensions. Hence, we use multiple linked views to present
them thoroughly. We coordinate a set of visualizations to
support multifaceted cascade analysis and visually connect
them using the colors of locations.

Spatial propagation analysis methods can be catego-
rized into model- and data-driven methods. Model-driven
methods mainly use mathematical or physical models to
simulate the effects on different locations. For example,
HYSPLIT [52] is widely used to analyze air pollution propa-
gation [11]. Cell transmission model [10] is proposed to sim-
ulate traffic flow and congestion [35], [69]. These methods
simplify complex real-world environments by introducing
many assumptions [22] when building simulation models.

By comparison, data-driven methods start from the ob-
served phenomena and infer the underlying patterns among
locations. Liu et al. [33] and Wang et al. [58] constructed the
diffusion links between congestion events based on their
spatiotemporal connection. Frequent pattern mining has
been applied beyond modeling individual links to identify
significant propagation pathways [8], [11], [27], [41]. These
frequency-based approaches can only uncover the general
phenomena but not the inherent relationships between
them because they ignored the probabilistic dependencies
revealed in the influence estimation.

Two probabilistic methods were proposed recently. Zhu
et al. [74] utilized Bayesian network to analyze the causal
pathways of air pollution. Liang et al. [28] extended network
inference techniques [15] for traffic congestion. However,
Liang et al. partitioned the time into slices based on traffic
periodicity, which cannot be applied to other scenarios.
Cascades can occur on an irregular basis, and spatiotem-
poral events can occur at any time in a dynamic urban
environment. For example, factories may emit air pollutants
and pollute the environment during operation. Traffic ac-
cidents can lead to congestions over traffic cascading pat-
terns. Moreover, both methods ignored the influence dura-
tions [70], [75], which are critical in characterizing influence
processes and capturing reliable results (e.g., the chance of
randomness is high when the duration is short).

By contrast, our mining algorithm exploits the influence
durations to characterize the dependencies and randomness
of influences further and is applicable to general scenarios
by avoiding the time partitioning. Our visual analytics ap-
proach also enables pattern verification and interpretation.
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Fig. 1: Relevant concepts for spatial cascade analyses. (A)
Multiple geographic locations. (B) The numerous spatial
cascades occurring in (A). (C) The cascading pattern inferred
from (B). (D) Spatial time series. (E) Spatial event time series.
(F) An infection event. (G) The different results of infection
event extraction with different thresholds.

3 BACKGROUND AND CONCEPTS

Rapid urbanization has contributed to many notorious ur-
ban problems, such as traffic congestion and air pollu-
tion [72]. These urban problems generally constitute numer-
ous spatiotemporal events propagating over space and time
via cascading patterns. Fig. 1C shows a cascading pattern
example that involves five locations l1, ..., l5 in Fig. 1A.
Each propagation process is called a cascade (Fig. 1B). In-
vestigating these cascades and cascading patterns presents
valuable implications in many urban applications, such as
vulnerability identification and spatiotemporal prediction.
For example, the cascading patterns extracted from traffic
congestion events can enable local authorities to take effec-
tive countermeasures, such as improving the road condi-
tions at the patterns’ roots and pathways.

Extracting and analyzing such patterns remain challeng-
ing. Most urban sensors generate a series of records that
comprise locations, timestamps, and readings. Recovering
implicit spatiotemporal influences from these records is
difficult. For example, Fig. 1B2 illustrates the sensor records
collected at two consecutive timestamps by denoting the
abnormal locations (l1 on the left and l1, l2 on the right) with
red. The implicit influence indicated with the blue arrow
between l1 and l2 must be inferred from the discrete records.
Moreover, cascading patterns must be characterized from
these influences to support domain analyses and insight re-
trieval. Hence, we propose a visual analytics approach that
combines an inference algorithm with interactive visualiza-
tions to facilitate extraction, verification, and interpretation
of cascading patterns.

We draw an intuitive analogy between the propagation
of spatiotemporal events and the spread of viruses and

introduce the following relevant concepts:
• A spatial contagion is defined as an event that occurs in

geo-space and can expand its influence to cause urban
deterioration, such as a traffic congestion event.

• A spatial time series Al = ha1, a2, ...i is a chronologically
ordered set of values detected at location l (Fig. 1D).
Each value at 2 A is collected at time t.

• A spatial event time series Bl = hb1, b2, ...i is a chrono-
logically ordered set of Boolean values (i.e., bt 2 {0, 1})
that indicate whether an event has occurred at loca-
tion l at time t. Fig. 1E shows two spatial event time
series where the red dots indicate the occurrences of
events (i.e., bt = 1). A spatial event time series Bl

can be obtained directly from sensors or a spatial time
series Al = hati by bt = P (at) based on a predicate
P : R ! {0, 1}. For example, the predicate P✓ we use in
Fig. 1E determines event occurrences based on whether
the value of at exceeds a given threshold ✓ as follows:

P✓(at) =

(
1, if at > ✓

0, otherwise

The value of ✓ is denoted by the green lines in Fig. 1E.
The threshold ✓ or the predicate P itself is determined
by actual applications in practice (two examples are
provided in Sec. 4.1). Fig. 1G shows how event detec-
tion varies with different thresholds. Fewer events are
detected with a larger ✓ (Fig. 1G1), eventually produc-
ing the patterns that capture the cascades of extreme
events (e.g., hazardous air pollution events).

• An infection event series El = hel;t1,t2 , el;t3,t4 , ...i can be
extracted from a spatial event time series Bl = hbti to
characterize continuous events at location l. An infection
event el;ts,te 2 El indicates that the spatial contagion
event continuously occurs from time ts to te at location
l (Fig. 1F). We have ^te

t=tsbt = 1 while bts�1 = 0 and
bte+1 = 0 for each el;ts,te 2 El. We denote the start
time of el 2 El as ts(el) and the end time as te(el) for a
compact description.

• An infection or influence describes a process where the
spatial contagion is propagated from one location u

to another v (the blue arrow in Fig. 1B2), that is, v is
infected by u. An infection reveals the implicit causal
relationship between two infection events occurring at
locations u and v.

• A cascade reveals how a spatial contagion spreads over
the locations and infect them (Fig. 1B1). Cascades can
be considered directed graph data where vertices rep-
resent infection events and edges represent influences.

• A cascading pattern or network G = (V, S) is a directed
graph extracted from a sheer volume of cascades to
describe the spreading pattern of spatial contagions
(Fig. 1C). Each vertex v 2 V represents a location l,
and each directed edge (vi, vj) 2 S indicates that vj

depends on vi, i.e., if vi is infected, then vj will likely be
infected also. Such a relationship is called dependency.

This study aims to identify the underlying cascading
network G effectively and facilitate the reliable verification
and interpretation of this network with visual analytics
given a set of locations and their associated spatial time
series {Al1 , Al2 , ...}.
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4 MODEL

This section presents the mining framework for inferring
cascading patterns in general spatiotemporal domains.

4.1 Infection Event Extraction

First of all, infection events are extracted from the given
spatial time series {Al1 , Al2 , ...} by converting the series
to spatial event time series {Bl1 , Bl2 , ...} with application-
specific predicates and identifying the start and end times
of continuous events. For example, fine particulate air pol-
lution events can be determined based on the spatial time
series of PM2.5 (i.e., the density of fine particles with a
diameter of 2.5µm or less) with the predicate P✓ . According
to WHO’s air quality guidelines [43], the threshold ✓ in
this predicate is set to 75µgm�3 to find the extreme air
pollution events where the value of PM2.5 fails to even
meet the lowest interim air quality targets for particulate
matter. Similarly, we extract traffic congestion events based
on the spatial time series of traffic speed with a predicate
that determines whether the speed is lower than 20 km/h,
which is a threshold commonly seen in traffic congestion
studies [23], [34], [40]. In this way, an infection event series
El can be obtained for each location l.

4.2 Cascading Network Inference

This section describes the approach we adopt to infer the
cascading network G based on the infection event series.

4.2.1 Congestion Cascading Network Inference
This subsection briefly summarizes the core idea of the pre-
vious method by Liang et al. [28], which is the foundation
of our approach. This method is designed to infer traffic
congestion cascading patterns and comprised of two major
parts, namely, influence modeling and network extraction.

Influence Modeling. To extract traffic congestion events,
the previous method exploits the periodicity of traffic con-
gestion by partitioning the time into a set of slices C =
{c1, c2, ...} (Fig. 2A1) and identifies at most one event eu

for each location u in every slice (Fig. 2B). Liang et al. use
the following monotonic exponential model to model the
influence likelihood between two events eu and ev occurring
in the same slice:

f(ev|eu) / exp(�↵(dts(eu, ev) + �ds(u, v))),

where ↵ is the transmission rate, dts(eu, ev) denotes the start
time difference ts(ev) � ts(eu) that is always non-negative,
ds(u, v) denotes the spatial distance between u and v, and �

is the trade-off parameter between two terms.
The previous method also considers environmental in-

fluence. For example, congested traffic may be caused by
a crowded parking lot rather than nearby roads. To in-
corporate such influence, the previous method estimates
an environmental factor ✏g for each spatial grid g with
supervised learning and derives a weighted likelihood for a
pair of roads u and v in a slice c: wc(u, v) = ✏

�1
g f(ev|eu),

where eu, ev 2 c, v 2 g.
Network Extraction. Liang et al. use a greedy algorithm

to extract the cascading network G = (V, S). Starting from
an empty network, this algorithm evaluates every pair of
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Fig. 2: (A) Illustrative infection event series. (B) Two correct
slices extracted based on (A1) the appropriate partitions. (C)
Three incorrect slices extracted based on (A2) the inappro-
priate partitions. (D) Our time window strategy that does
not need time partitioning.

roads that have not been added to the network in all slices
and determines the pair (p, q) that maximizes

X

c2C

log(1 +
wc(p, q)P

i2V [p;i 6=q wc(i, q)
).

(p, q) is subsequently inserted into G. Repeat this process
until the number of edges reaches a given threshold k.

4.2.2 Generalized Cascading Network Inference
Following Liang et al., we also use a similar monotonic
exponential model for characterizing influence likelihood.
However, two limitations of Liang et al.’s approach must be
addressed for generalized pattern inference.

The first limitation lies in data partitioning. Liang et al.’s
approach requires the temporal partitioning of traffic con-
gestion events first because traffic congestion occurs period-
ically. Applying this partitioning strategy to the generalized
pattern inference has the following drawbacks: (a) many
datasets, such as air quality data spanning across months,
are not periodic; (b) improper partitioning may break long
cascades (Fig. 2A2) and lead to incorrect cascading patterns;
and (c) extracting only one infection event for each location
in every time slice prohibits fine-grained cascading pattern
analysis. To address this limitation, we allow multiple in-
fection events to be detected for each location as described
in Sec. 4.1 and introduce a time window parameter tw. As
illustrated in Fig. 2D, we only search in a time window of
tw before the occurrence of the infection event e2 for the
events that potentially cause e2. Only the latest event in each
location will be searched.

The second limitation is that their approach does not
consider the durations of infection events, which are critical
in the cascade analysis [70], [75]. We address this limita-
tion by integrating the durations as an external factor ✏d.
Specifically, we denote the duration of an infection event e
as td(e) = te(e)� ts(e) and the normalized frequency of the
infection events occurring at location u as fu 2 [0, 1]. For
any two infection events eu and ev occurring at locations u

and v, we have ✏d(eu, ev) = fu
td(eu)fv

td(ev). Longer infec-
tion durations will lead to lower external factors, thereby re-
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sulting in higher influence likelihood. However, long event
durations are required to maintain reliable inference for the
events occurring at frequently infected locations.

Therefore, we derive a new weighted likelihood model
that estimates the influence of infection event eu occurring
at location u on ev occurring at v as follows:

w(eu, ev) = ✏d(eu, ev)
�1

f(ev|eu).

We then utilize the greedy approach proposed by Liang et al.
to generate the cascading network G by iteratively adding
the pair of locations p and q that maximizes

X

eq2Eq

log(1 +
w(Rp(eq), eq)P

i2V [p;i 6=q w(Ri(eq), eq)
),

where Rp(eq) denotes the latest event occurring at location p

in the time window tw before eq . The algorithm pseudocode
and time complexity estimation of network extraction are
presented in Appendix A.

4.3 Cascade Retrieving

Based on the extracted cascading network G = (V, S), we
further describe the procedure for obtaining the cascades of
infection events that reveal how spatial contagions spread.

We denote the events that are caused by event el as
C(el), which can be computed as follows. For each edge
(u, v) 2 S and each event eu 2 Eu, we find the latest
event ev 2 Ev that occurs in the time window tw after
the occurrence of eu and add ev to C(eu). We can then
reconstruct a graph with C and obtain each connected
component as a cascade of events.

5 USER REQUIREMENTS

We collaborated closely with four domain experts (Experts
A, B, C, and D denoted EA, EB, EC, and ED, respectively)
committed to urban science for many years. EA and EB
have decades of experience in utilizing data-driven ap-
proaches to study various urban problems. EC is a Ph.D.
candidate working on urban issues with machine learn-
ing, including network inference. ED has been engaged in
combining environmental science and geoscience research
for the past decade. We follow an iterative user-centered
design process [39] in this study. We iteratively refine user
requirements as well as a prototype system with bi-weekly
expert interviews and literature review. Finally, we compile
seven requirements in three aspects as follows.
N. Location navigation helps specify the area where the
experts are going to analyze spatial cascades.
R1 Provide location overviews. First, the experts need to

identify and select interesting locations like Liang et al.
did in their study [28]. They pay attention to the spa-
tial context and temporal distribution of the locations’
infection events. The system should allow access to the
spatiotemporal overview for each location.

R2 Recommend potential locations. The experts can have
no specific prior knowledge for a target area to initialize
the analysis. The system should recommend several
potential locations, where strong infection dependencies
and valuable patterns may be revealed. In particular,

the experts believe that the temporal co-occurrences of
infection events can enhance this recommendation.

I. Influence inspection assists the experts in analyzing
the uncertain and implicit influences among locations for
verifying and interpreting cascading patterns.
R3 Summarize various cascades. A cascading network

comprises massive cascades of infection events. Each
cascade involves multiple location influences due to the
same contagion. Summarizing these cascades prior to
the influence analysis is strongly required to learn how
contagions propagate; for example, which locations are all
infected by contagions frequently?

R4 Display the uncertainties of influences. An infection
event has many possible upstream infection events.
Although the algorithm has estimated the most likely
upstream, the system should reveal other possibilities to
understand the reliability and uncertainty of the infer-
ence result, such as how does the possibility of the inferred
upstream differ from that of others?

R5 Characterize influencing processes. The experts can
understand how a downstream event depends on its
upstream and what happened between them by exam-
ining location influences. The following questions may
be asked: Does the downstream get easily infected when its
upstream is infected? Are the infection situations similar?
Therefore, the system should visually depict influencing
processes.

E. Cascading exploration helps the experts explore the
cascades of cascading patterns and unfold them in detail.
R6 Investigate the temporal characteristics of cascades.

Cascades can occur many times and lead to different
degrees of infections. The experts aim to obtain the
temporal distribution of cascades (When do the cascades
usually happen? Winter? Rush hour?) and the cascad-
ing effects on the involved locations (Does the cascades
last long?). Thus, temporal visualizations for cascades
should be implemented in the system.

R7 Unfold individual cascades. The experts tend to access
detailed infections and obtain convincing results by
unfolding the cascades. They must understand how the
contagion spreads over the locations involved in a cas-
cade to recover the reasons behind urban deterioration.

Influence
visualization

Organization

Low High

N:Location Navigation I:Influence Inspection E:Cascading Exploration

Infection
Extraction

Pattern
Inference

Cascade
Retrieving

locations

pattern / cascades

Uncertainty
visualization

Fig. 3: Workflow and system architecture. The blue parts are
the user requirements in three aspects and their correspond-
ing visualizations. The black parts show the model.
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Questions may be asked, for instance, when did A get
infected? Were B and C infected after A got infected? How
long was the delay? How severe was the cascade?

6 VISCAS

We develop VisCas to satisfy the seven requirements. Fig. 3
presents the system overview. The system is refined and
improved iteratively based on the user requirements. We
fully consider the experts’ suggestions collected from inter-
views during the iteration. As a result, the system adopts
many representations familiar to the experts, such as tables
and timelines. We also carefully explore design spaces and
justify our designs by following the design principles from
the visualization community.

VisCas comprises three views, namely, spatial, influence,
and cascading views. First, the spatial view (Fig. 4A) offers
an effective and interactive environment for navigating
locations (N: R1 and R2). Users can explore and select
interesting locations based on their knowledge and then
run the inference algorithm. The inferred cascading pattern
is also presented in the spatial view. Second, the influence
view (Fig. 4B) helps inspect the influencing and cascading
processes among locations (I: R3-R5). This view depicts the
numerous cascades and influences in the pattern. Users can
verify the pattern through uncertainty visualizations and
interpret the pattern by analyzing the influencing processes.
Finally, the cascading view (Fig. 4C) supports exploring nu-
merous cascades and drilling down to individual ones (E:
R6 and R7). The temporal characteristics of the cascades are
revealed by a folded timeline. Users can further check the
details of the cascades by brushing the timeline.

6.1 Spatial View

The spatial view (Fig. 4A) comprises a map (left) and a loca-
tion projection (right) to assist users in navigating locations
(N: Location navigation).

6.1.1 Map

Maps (Fig. 4A4) are widely used in urban analysis scenar-
ios [59]. We use a level-of-detail mechanism for the map.
Each location is represented by a circle, and the size and
opacity of the circles encode the number of events. Zoom-
ing in on the map reveals the spatiotemporal overviews
(Figs. 8B2 and 4A6) for the locations (R1). Inspired by the
widely used radial layout for temporal data [32], [46], we
encode the temporal distribution of events with a radial
heatmap around the circle for each location. The opacity
of each sector encodes the number of events aggregated
from the corresponding timespan. Different aggregation
strategies can be applied. For example, for traffic congestion
events, each sector represents an hour of every day, result-
ing in 24 sectors; and for air pollution events, 12 sectors
correspond to 12 months of a year.

The map also depicts the cascading patterns inferred by
the model as spatial networks (Fig. 4A4). Each location is
assigned with a unique color that is consistent throughout
the system.

6.1.2 Location projection
The projection (Fig. 4A1) reveals interesting location subsets
when users have no exact prior knowledge (R2).

If 1) a pair of locations are close to each other and 2)
the infection events in these two locations frequently co-
occur, then these two locations are highly likely infected
simultaneously. The first condition can be easily checked
on the map. We design the projection based on a two-level
distance measurement to capture the event co-occurrences
between two locations, such as, m and n.

First, we introduce an infection-level co-occurrence dis-
tance function for em 2 Em and en 2 En as follows:

Di(em, en) =
|dts(em, en)|+ |dte(em, en)|

td(em) + td(en)
.

dts(em, en) and dte(em, en) denote the differences between
the start times and end times, respectively, and td(e) =
te(e) � ts(e) denotes the duration of e. Two co-occurring
infection events should start and end at similar timestamps
(the numerator of Di(em, en)) and these two events should
both last for a long time (the denominator of Di(em, en)).

Second, we introduce a location-level distance function
between locations m and n based on the infection-level
distance. Specifically, we utilize a classic framework for time
series called dynamic time warping (DTW) [2], [3], [17], [24].
DTW can automatically pair the items in two sequences
and compute the similarity of sequences by accumulating
the distances between the paired items. In our scenario, we
feed Em and En into DTW and use the infection-level co-
occurrence distance Di(em, en) as the distance function for
the paired events. Hence, DTW will produce the location-
level distance, which measures the degree of event co-
occurrences at locations m and n.

Finally, we feed a matrix that comprises the distances
between all pairs of locations into t-SNE and obtain pro-
jected 2D coordinates for each location. The coordinates are
subsequently plotted as a scatterplot. The numbers of events
are encoded with the opacity of scattered points.

6.2 Influence View

The influence view (Fig. 4B) helps users verify and interpret
a cascading pattern by inspecting its uncertain and implicit
influences (I: Influence inspection). We describe the influ-
ence view from the two aspects: the organization of cascades
and the visualization of location influences.

6.2.1 Organization of cascades
The influence view adopts a table-based layout to organize
and summarize cascades in an occlusion-free manner (R3),
as illustrated in Fig. 5.

Table-based Layout. Each column represents an edge
in the cascading network. For example, the last column in
Fig. 5B represents edge 5 in Fig. 5A. Each row represents
a group of cascades comprising the same topology. For
example, the first row in Fig. 5B represents the cascade
group in Fig. 5a. The height of each row encodes the
number of cascades. The cell celli,j at the i-th row (cascade
group) and j-th column (edge) comprises the influences
associated with the corresponding cascade group and the
edge. For example, the top-right cell in Fig. 5B comprises the
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row and column orders in (B), respectively.

influences associated with the part of cascading networks
enclosed inside the blue rectangle in Fig. 5a. We visualize
the uncertainties and influencing processes of its associated
influences in a cell (Sec. 6.2.2). Each column header shows
1) the upstream (left) and downstream (right) locations of
the edge and 2) the likelihood distribution of all influences
associated with the edge (Fig. 4B4).

Improvement. The tabular representation can organize
numerous cascades and influences in an unobstructed man-
ner, but some patterns may become illegible if the layout of
the representation is not optimized. For example, frequently
co-occurring edges 1 and 5 can be easily seen in Fig. 5D but

unclear with a scattered layout shown in Fig. 5B. Achieving
a legible layout requires reordering the rows and columns.

We can naturally formulate this problem of finding the
optimized order (path) as the Hamiltonian path problem [48]
because the order of the rows or columns is equivalent to
a path that visits each row or column exactly once. The
Hamiltonian path problem is to identify the path with the
minimum cost (the sum of path weights) that visits each
vertex exactly once in a weighted graph. The weighted
graph in our scenario is a complete graph where each vertex
denotes a row or column. The weight between a pair of rows
or columns indicates the cost of placing them side by side.
The optimal Hamiltonian path represents the optimal order
of the rows or columns. Thus, the key problem is to define
the weights between the rows or columns.

Optimizing the row order. Adjacent rows should share
many cells and have similar heights. We first formulate each
row i as a set, where each item j indicates celli,j exists.
Then, we obtain the weight between each pair of the row
sets by computing the Jaccard distance multiplied by the
height difference between these two rows. After optimizing
the row order, the appearance becomes continuous in the
vertical direction but visual discontinuities are still observed
in the horizontal direction (Fig. 5C).

Optimizing the column order. Similarly, adjacent columns
should share many cells. We first formulate each column j as
a vector with the dimension as the number of rows, where
the i-th item is the height of the i-th row. If the column j

has no cell in the i-th row, then the i-th item of the vector is
zero. We then use the weighted Jaccard distance [9], [20] (an
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extended version of the Jaccard distance on positive vectors)
between two vectors as the weight between their columns.
Finally, we obtain a legible layout (Fig. 5D) where both the
row and column orders are optimized.

In this way, users can easily summarize the cascades and
influences. The details of the weight functions above are
available in Appendix B.

6.2.2 Visualization of location influences
Within each cell, we summarize the uncertainties of the
influences comprised by the cell (R4) and portray these
influencing processes (R5). The uncertainty is displayed
by default. Users can switch between the uncertainty and
influence visualizations.

Uncertainty Visualization. A cascading network is sum-
marized from long-term observations. Thus, for a specific
infection event ev , other possibilities ems (m 6= u) with a
larger likelihood f(ev|em) than the inferred f(ev|eu) may
exist. Uncertainty visualization should reflect how much the
inferred upstream eu exceeds ems.

According to the experts’ suggestions, those ems with
a larger likelihood and longer duration are denoted more
likely causes. For the influences comprised by the same cell,
we derive an uncertainty metric by dividing the number
of the more likely causes by the number of influences. The
metric is then encoded with the cell luminance. For example,
most cells in Fig. 4B5, except those at the bottom, are bright,
indicating that most of the influences are certain.

Influence Visualization. We visualize every single influ-
ence with a timeline-based influence glyph (Fig. 6B), where the
two infection events are aligned along the timeline. We place
these two events on the same horizontal position and make
the overlapping part bold for highlight, thereby improving
the scalability and readability. Colors are assigned according
to the corresponding locations, and the overlapping part
mixes both. Subsequently, we visualize multiple influences by
stacking the multiple glyphs and aligning them according
to the downstream events’ start times (Fig. 6C).

However, the visually intermittent appearance prevents
users from analyzing these influences, for example, grasping
the distribution of start time differences. Improving the
readability is also an order optimization problem like that
in the influence view. We address this issue based on the
Hamiltonian path problem again. Here, the weights are

Euclidean distances between influence vectors (e.g., hts(eu)�
ts(ev), te(eu)�ts(ev), te(ev)�ts(ev)i in Fig. 6B1). Such vec-
tors properly portray the appearance of the influence glyph
in the horizontal direction. We obtain a clear appearance in
the end (Fig. 6D).

6.2.3 Solving Hamiltonian path problem
Our designs use layout optimizations based on the Hamil-
tonian path problem in three parts, the orders of 1) stacked
multiple influence glyphs and 2) the column and 3) the row
of the influence view. However, solving the Hamiltonian
path problem within a time of fluid interaction is difficult.
The time complexity of its dynamic programming solution
is O(2|V ||V |2), where |V | is the number of vertices. The run
time becomes prohibited when |V | is larger than 30. Various
heuristic algorithms, such as Genetic and Ant Colony algo-
rithms, have been used to approximate the optimal solution
to similar problems [18], [49], [53]. We must sacrifice some
accuracy while maintaining the overall visual quality of
the layouts to obtain a satisfactory solution for dozens of
vertices in a short time; for example, 300 ms. We finally
apply a local search algorithm [55] to iteratively conduct the
item swaps that obtain the maximum gain in each iteration.

6.2.4 Justification
We justify the two main visual designs in the influence view.

Organization of cascades. We also create two alternatives to
organize cascades based on the two commonly used graph
visualizations [14], namely, adjacency matrix and node-link
diagram [71]. Each cascade can be visualized as a node-link
diagram and squashed by placing the nodes on the same
horizontal position (Fig. 7A). Compactly stacking them can
handle many cascades. However, the limited visual chan-
nels for the links hinder the effective encodings of its asso-
ciated information. Each cascade can also be represented as
an adjacency matrix (Fig. 7B). This encoding is even worse
than that in Fig. 7A. The matrix-based representation is
space inefficient because of its sparsity. Finally, we adopt
the table-based visualization (Fig. 7C), a scalable and clutter-
free manner, as our final design. The influences in each cell
can be unfolded by embedding effective visualizations.

Influence visualization. Influences are essentially multi-
dimensional data. We explore commonly used visualiza-
tions, such as parallel coordinates plot, multiple coordinated
views, dimension reduction, and glyph-based methods, for
this kind of data. Only the proposed timeline-based glyph
(Fig. 6E) can intuitively and compactly present the temporal
feature of an influencing process. Moreover, the experts can
immediately understand the glyph design because of their
familiarity with timelines.

6.3 Cascading View

The cascading view (Fig. 4C) consists of a temporal chart (top)
and a list of cascading cards (bottom) to allow users to explore

CA B

Fig. 7: (A, B) Two alternatives and (C) our final design for
organizing groups of cascades with different topologies.
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the numerous cascades of cascading patterns (E: Cascading
exploration).

Temporal Chart. We visualize many cascades along a
long timeline and expose their temporal characteristics to
users (R6). As illustrated in Fig. 4C3, the temporal chart
folds the timeline from top to bottom and left to right. Each
cascade is represented as a bar. The positions of its upper
and lower borders encode the start and end times of the
cascade, respectively. The bars’ occurrences are aggregated
in both horizontal and vertical directions as the heatmaps
above and to the right of the chart, respectively.

Cascading Card. Each card presents an individual cas-
cade in detail (R7) and mainly constitutes multiple time-
lines. Each one indicates how a specific contagion infects an
involved location and is colored according to the location.
The card header displays the start and end times of the
cascade. The cascading card design is borrowed from the
experts’ hand-draft of cascades (Fig. 2).

6.4 User Interactions

The following useful interactions are implemented.
Interactive Mining. VisCas enables the interactive cus-

tomization of the model inputs and obtains inference re-
sults in real time. Users can specify locations by drawing
polygons in the geographic map or using a lasso tool in the
projection view. The number of edges k in the cascading
pattern and the time window tw can also be tuned via the
sliders in Fig. 4A7.

Filtering and Selecting. Users can focus on the cascades
of their interests by filtering and selecting. They can click
the column headers in the influence view. The cascades
without the clicked columns (edges) are filtered from the
influence and cascading views. Users can also click rows to
select cascade groups. For example, the header of e3 and the
first row are clicked in Fig. 4B. Besides, users can brush the
temporal chart (Fig. 4C4), and these brushed cascades (i.e.,
bars) are shown with cascading cards (Fig. 4C2).

Switching. We design the uncertainty and influence
visualizations in the influence view to reveal location influ-
ences from the two aspects. Users must know uncertainties
(R4) before the influence analysis (R5). Thus, the uncertainty
visualizations are displayed by default. When a row is
selected (e.g., the first row in Fig. 4B) or a floating button
of a column is clicked (e.g., e4 in Fig. 8C), the involved cells
will be switched to the influence visualizations.

6.5 Implementation

VisCas is a web-based application with a frontend and a
backend. The frontend is written in Vue.js and TypeScript,
runs in modern web browsers, and enables users to interact
with the system and conduct in-depth cascade analyses.
The backend is implemented in GO (https://golang.org/).
It integrates 1) a data mining module to infer cascading
networks given input parameters (Sec. 4.2) and retrieve
cascades (Sec. 4.3) and 2) a layout optimization procedure to
produce readable layouts in the influence view (Sec. 6.2.3).

7 CASE STUDIES

We demonstrate the effectiveness and capability of VisCas
with two case studies and four interviews with the four

experts. We introduced VisCas, including the workflow,
visual encodings, and user interactions, to the experts to
help them familiarize with the system, before the case stud-
ies. Thereafter, the experts utilized our system to analyze
the spatial cascades extracted from two different datasets,
namely, traffic congestion and air pollution datasets, in an
attempt to gain insights into urban planning. Finally, we
interviewed the experts individually and obtained feedback.

7.1 Cascade Analysis of Traffic Congestion

The experts aimed to identify traffic bottlenecks or conges-
tion development patterns in Hangzhou and subsequently
formulate policies for improved transportation, such as in-
frastructure upgrade and intelligent traffic control.

Dataset and Processing. We retrieved a congestion
dataset from taxi trajectories in Hangzhou following prior
studies [33], [45], [66]. Taxi trajectories from local authori-
ties recorded the trajectories of 8,816 taxis between March
and April 2016. Low-level roads, such as village roads,
were filtered and resulted in 944 major road segments. We
computed the average speed of the taxis passing through
each road for every 10 minutes as the travel speed, which
constitutes a set of spatial time series. A road segment is
considered congested if the travel speed did not exceed
20 km/h (see Sec. 4.1). Finally, 944 time series data of
congestion events were extracted and fed into VisCas.

Location Navigation. The experts started with the pro-
jection view (Fig. 4A1) given that they had no preference
for regions. Locations close to one other in the projection
view were likely influenced by the same contagion. Few
dark and many bright dots in each location cluster indicated
diverse degrees of congestions. EC explained that “conges-
tions were often caused and spread by some locations in a bad
traffic situation.” The experts selected the most abnormal
location cluster (Fig. 4A2) with the Lasso tool based on
their interest after examining the projection view. A group of
geographically adjacent locations in the map view (enclosed
in Fig. 4A3) caught the attention of the experts. Two of these
locations were heavily congested, and one was a part of an
arterial road.

The experts ran the network inference model in the se-
lected region. The time window tw was set to 1 hour consid-
ering the backward propagation speed of traffic flows. The
inferred cascading pattern and an overview of the involved
locations were shown in Fig. 4A4. The experts noticed that
the cyan and orange locations were more congested because
their inner circles were larger than those of the two other
locations (Fig. 4A6). The following findings are drawn from
the analysis of the 24-hour congestion distribution: 1) for
the cyan and orange locations, severe congestions (darker
sectors) tended to occur in the morning; 2) for the blue and
cyan locations and 3) for the purple and orange locations,
the trends in the afternoon were similar. EB concluded that
the temporal distributions of these locations were similar
in certain periods, thereby indicating the presence of many
congestion co-occurrences and potential dependencies. He
also praised the spatial view saying, “it helped me quickly
identify interesting areas.”

Influence Inspection. The experts analyzed influences
with the influence view (Fig. 4B) to reveal the inherent

https://golang.org/


TRANSACTIONS OF , VOL. 14, NO. 8, AUGUST 2015 10

relationships among locations. For convenience, we denoted
the four columns (each representing an edge) from left
to right as e1-e4. First, the longer cells in e3 than others
(Fig. 4B5) indicated that the influences from the cyan loca-
tion to the orange location occurred frequently. Therefore,
the cyan location could be a significant traffic bottleneck.
Moreover, e1-e4 rarely co-occurred (Fig. 4B6). EA suggested
that this might be because e1-e4 represented different traffic
demands (e.g., the different demands in the morning and
evening rush hours); thus, the traffic deterioration at these
locations could be caused by different contagions.

The experts then explored the influences between the top
two congested locations., that is, the cyan and orange loca-
tions linked by e3. EA observed that the overall likelihoods
of e3 were lower than that of others (Fig. 4B4). Nevertheless,
the cells in e3 were mostly bright, thereby indicating that
their inference results were generally reliable and deserved
further analysis.

The experts examined the influence processes with the
influence glyphs (Figs. 4B1- 4B3), which were made readable
with the proposed layout optimization. They categorized
these glyphs into three modes based on the relationships
between the infection durations in upstream DU and those
in downstream DD and explained these modes accordingly.
1) DU ' DD (Fig. 4B2): The downstream events largely
depended on the upstream events, which was the most
common mode. “The varied response times might be due to the
different traffic wave speeds in the backward propagation” [10]; 2)
DU � DD (Fig. 4B3): Other events might also contribute to
the downstream events; 3) DU ⌧ DD (Fig. 4B1): The traffic
volume was small, or drivers chose other routes to avoid the
upstream congestions.

Cascading Exploration. The cascades only containing
e3 were selected by clicking the first row in Fig. 4B. The
heatmap on the right side of Fig. 4C1 suggested that these
cascades mainly occurred in the morning. These morning
cascades were further brushed and selected by the experts
(Fig. 4C4). The cascading cards in Fig. 4C2 showed that most
upstream congestions influenced the downstream locations
within half an hour. EB commented that “such information
can facilitate intelligent routing for the traffic demands in the
morning.” Besides, the cascades containing e1 mainly oc-
curred in the afternoon (Fig. 4C5). This temporal difference
in the cascades’ occurrences further confirmed that traffic
deterioration was due to different traffic demands.

Conclusion. The traffic infrastructure development after
2016, when our data were collected, validates the aforemen-
tioned patterns. 1) The Wenyi Tunnel that passes through
the blue and cyan locations started operations in October
2018. 2) Metro Line 10, which is currently under construc-
tion, stops at both the cyan and orange locations; 3) Metro
Line 2, which was opened in 2017, connects the purple
and blue locations (where passengers can interchange to
Line 10) and goes downtown. This case showed that our
system could help reveal and interpret the traffic cascades
concealed in congestion observations.

7.2 Cascade Analysis of Air Pollution

Before 2016, the heavy industry (e.g., coal-fired heating)
in northern China spread pollution to the Yangtze Delta
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Fig. 8: Cascade analysis of air pollution. (A) The spatial dis-
tribution of the locations in eastern China. (B) The locations
in Hangzhou and the inferred cascading pattern. (C) The
influences in the pattern in (B). (D) The uncertainty and
(E) influence visualizations for the influences of e4. (F) The
cascading cards of the cascades involving e3 and e4. (G) The
temporal chart of the pattern in (B).

in southern China, where Hangzhou is located [36]. Two
actions were taken to improve the situation: 1) in 2016,
Hangzhou enforced strict air pollution control policies prior
to the G20 summit and achieved significant progress in
improving air quality; 2) since 2018, local authorities in
northern China have started to reform the industry, e.g.,
by using gas instead of burning coal. Thus, the experts
aimed to determine the major pollution source that led to
air pollution in Hangzhou during 2018.

Dataset and Processing. An air pollution event is de-
tected if the PM2.5 concentration is larger than 75µgm�3

(Sec. 4.1). Our dataset comprises the hourly readings of
the PM2.5 concentration from 482 major air monitoring
stations in China during 2018. 482 infection event series of
air pollution were extracted and then fed into VisCas.

Location Navigation. The experts first zoomed into
eastern China. The decrease of dot sizes from north to
south indicated that pollution in the north is more severe
than that in the south (Fig. 8A). ED pointed out that this
spatial distribution was contributed by “the different indus-
trial structures and climates between north and south and the
pollutants propagating from north to south.” The experts then
obtained the event distributions over 12 months in 2018 for
the locations in Hangzhou by zooming in (Fig. 8B2). The
presence of dark sectors suggested that the air pollution
events mainly occurred from winter to spring, especially
in January. ED explained that “such a seasonal characteristic
might be because high humidity facilitates the formation of PM2.5

via nucleation, and there is little rain to clean air pollution.”
Examining the spatiotemporal summary alone cannot

justify the cause of air pollution. Hence, the experts set tw to
6 hours based on their domain knowledge and obtained a
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star-shaped cascading pattern (Fig. 8B) This pattern showed
that air pollution first occurred at the center of Hangzhou
and then spread out. Therefore, the main cause of air pol-
lution in Hangzhou was likely local generation rather than
propagation from the north; otherwise, the network would
begin with two locations in the north (Fig. 8B1).

Influence Inspection. The experts analyzed the influ-
ences comprised in the pattern in the influence view to
understand the pattern thoroughly (Fig. 8C). The four edges
tended to co-occur, such as e1 and e2-3 (Fig. 8C2) and e4
and e1-3 (Fig. 8C3). The experts explained that, due to the
dynamic wind field, the central location’s pollution usually
influenced many other locations but not always all of the
locations were. ED hypothesized that “air deterioration in this
region might be caused by the diffusion processes started from
the cyan (central) location.” EC also commented that “massive
cascades and influences were well summarized by VisCas.”

Experts also noticed that the influences of e4 had lower
likelihoods (Fig. 8C1) than those of e1-e3 (Fig. 8C1) More-
over, the presence of some dark cells in e4 indicated high
uncertainties (Fig. 8D). Thus, the experts considered e4
unreliable. Nonetheless, the severe overlapping in Fig. 8E
showed that the infection situations in the two locations
involved in e4 were highly similar and thus had strong
dependencies. Such an inconsistency confused the experts.

EA believed that the long distance between the cyan and
green locations resulted in the low likelihoods. The experts
also speculated that the pollutants of the cyan location were
first transported to the purple, the geographically central
location of e4, and then to the green. To figure out this
situation, the experts accessed the cascades infecting both
of the purple and green locations by selecting e3 and e4.
They skimmed over the cascading cards and found many
cascades showing that the purple and green locations got
infected simultaneously (Fig. 8F). EA suggested that the sen-
sors might not have sufficient time granularity to record the
processes where the purple and green locations got infected
successively, and thus their dependency relationship was
missed. ED concluded that the cyan location’s pollutants
could spread to the areas around Hangzhou, including the
distant southeast region. EC added, “the uncertainty visual-
izations enable analyzing cascades and influences confidently.”

Cascading Exploration. In the temporal chart, the ex-
perts found that the cascades of the pattern mostly occurred
in winter and spring (Fig. 8G). The cascades during these
periods lasted an exceptionally long time, indicated by the
bars’ lengths. EC spoke highly of VisCas, stating that “VisCas
allows analyzing the cascades occurring on an irregular basis that
cannot be handled before.” EB commented that the effects of
these cascades were severe and required urgent attention.
Effective policies were also recommended to alleviate pollu-
tion in Hangzhou: 1) control the local emissions, particularly
during winter and spring; 2) derive early warning strategies
based on the pollution events at the central location.

Conclusion. The experts learned through investigation
that the center location was a key factor contributing to
the pollution around Hangzhou. The largest industrial park
in Hangzhou and the largest logistics park in Zhejiang
Province were located at the center location. This case
demonstrated that the system could help identify the pol-
lution sources and diffusion processes that harmed the

environment. Our visualizations were also proven effective
in alleviating the limitation of data granularity.

7.3 Expert Interview

We conducted informal one-on-one interviews with the ex-
perts and summarized their feedback after the case studies.

Visual Design. All experts confirmed that VisCas could
present massive cascades with the well-designed and co-
ordinated visualizations. EA and EB commented that “the
cascades can be intuitively presented through the timeline-based
influence visualizations and cascading cards,” and “the three
major views support the workflow of multifaced cascade analyses.”

Usability. All experts praised the usability of VisCas. The
combination of the automated algorithm and visualizations
facilitates the discovery of the inherent relationships among
locations. ED mentioned, “Finding the air pollution source orig-
inally is a time-consuming and labor-intensive task.” Moreover,
the cascading pattern in the first case study revealed the real
traffic deterioration at that time. EA claimed that “feeding the
latest traffic data can understand and improve the present city.”

Suggestions. The experts also made some suggestions
for VisCas. Although the system effectively solves the gen-
eral spatial cascade analyses, domain-specific details need
to be presented to improve reasoning when applied to a
specific domain. For example, EB commented that “it is
suggested to display the vehicles’ trajectories as a supplement”
when analyzing traffic congestion. Additional attributes
were also suggested to be included to capture the latent
influence further. “Other relevant attributes such as PM10 can
be considered to model air pollution events,” said EA.

8 DISCUSSION

This section discusses the implications, lessons learned,
generalizability, and limitations of the proposed system.

Implications. Our work has many implications on nu-
merous applications from various domains. First, VisCas
helps experts identify spatial cascades and study inherent
relationships among locations to analyze urban deteriora-
tion with big data, which avoids time-consuming on-site in-
vestigations. For example, the traffic cascading pattern dis-
covered in the first case study can improve local authorities’
understanding of complex traffic congestion and assist them
in informed policy-making. Second, VisCas supports the
analysis of complex cascades based only on Boolean events.
This can be particularly useful in real-world applications
because rich and complete data are sometimes unavailable
for many reasons, such as privacy issues and limited moni-
toring capabilities. Third, VisCas is applicable to large-scale
urban data because 1) the proposed network inference algo-
rithm (Appendix A) is adequately fast to operate on a large
dataset in real time and 2) the proposed visualizations can
accommodate numerous cascades because of the compact
glyph design.

Lessons Learned. We learn two design lessons through
this design study. First, optimization algorithms can im-
prove the readability of visual designs. We formulate the
design of the influence view as the Hamiltonian path prob-
lem to obtain readable visual representations (Fig. 5D).
Generating visualizations with automatic optimization ef-
fectively addresses the design issues, such as visual clutters
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and occlusions caused by massive data. Second, interactive
mining can enhance exploratory analyses. Without useful
interactions, analysts may suffer from the tedious trial-
and-error process when searching for the correct area to
obtain meaningful patterns. By contrast, interactive mining
provides analysts with fluent exploratory analyses, enabling
a human-in-the-loop workflow. Moreover, heavy precalcu-
lation with different parameters is unnecessary due to the
on-demand mining process.

Generalizability. The case studies for traffic congestion
and air pollution have demonstrated that our approach
can be easily generalized to a number of scenarios. First,
the proposed network inference technique is application-
independent and can be applied to any spatiotemporal
events. Second, the proposed system is flexible because it is
developed by abstracting the user requirements from multi-
ple domains. Domain-specific views based on application
scenarios can be added to improve users’ understanding
of cascades in a different context and further improve the
usability of our approach.

Limitations. Our work has three limitations. The first
one lies in influence modeling. We only consider a single at-
tribute in this study. Modeling with multiple attributes [63]
or even cross-domain spatiotemporal events [38] can poten-
tially improve the performance of the proposed model. We
plan to incorporate multiple attributes and extend the model
to analyze cross-domain cascades in the future.

The second limitation is that the non-trivial designs
may be too complicated for average users to understand.
VisCas adopts novel designs to support challenging ana-
lytical tasks. Although the experts can easily understand
these visual designs, government officials may experience
difficulty in gaining insights due to their lack of expertise in
data analysis We will study how to better convey insights
gained from visual analytics in the future [5].

The third limitation lies in the specification of the spatial
and temporal constraints. For the spatial constraints, if users
perform an inappropriate area selection, then important
locations can be missed in the cascading network. This issue
can potentially be addressed with automatic space division
and area recommendation, and the model can be further
improved to adjust selection boundaries adaptively. For the
temporal constraints, small time windows may lead to the
loss of some important events and locations. To avoid this
issue, analysts can specify a slightly large window because
the monotonic exponential model will assign low weights
to the events that have occurred for a long time.

9 CONCLUSION

In this work, we systematically study the cascades of spatial
contagions via visual analytics. We first adapt a network in-
ference model to infer the cascading network of spatial con-
tagions for general urban scenarios. We then combine this
model with well-designed visualizations to develop a novel
visual analytics system called VisCas. VisCas supports an
analytical workflow for multi-faceted spatial cascade analy-
ses, including location navigation, influence inspection, and
cascading exploration. We demonstrate the effectiveness of
our approach with two case studies conducted on real-
world datasets and also discuss the valuable implications
and high generalizability of our approach.
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