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ABSTRACT
Visual analytics (VA) systems have been widely used in various
application domains. However, VA systems are complex in design,
which imposes a serious problem: although the academic commu-
nity constantly designs and implements new designs, the designs
are difficult to query, understand, and refer to by subsequent de-
signers. To mark a major step forward in tackling this problem, we
index VA designs in an expressive and accessible way, transforming
the designs into a structured format. We first conducted a workshop
study with VA designers to learn user requirements for understand-
ing and retrieving professional designs in VA systems. Thereafter,
we came up with an index structure VAID to describe advanced and
composited visualization designs with comprehensive labels about
their analytical tasks and visual designs. The usefulness of VAID
was validated through user studies. Our work opens new perspec-
tives for enhancing the accessibility and reusability of professional
visualization designs.

CCS CONCEPTS
• Human-centered computing→ Visualization.
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1 INTRODUCTION
Visual analytics (VA) combines data mining and visualization tech-
niques to help users with data exploration in different domains,
such as biology [31, 36], sports [8, 60], urban [18, 41], and explain-
able AI [22, 48]. Researchers in VA have developed advanced VA
systems with highly customized visualization designs for obtaining
insight into data [53]. Designing effective VA systems is highly
challenging and demanding, requiring close collaboration between
experienced visualization practitioners and domain experts.

Views are basic building blocks of VA systems. To create an
effective VA system, it is critical to design views by mapping the
data and tasks derived from domain problems to visual designs [46].
Recent advance in visualization has attempted to automate such a
mapping process [13, 16, 59]. However, these studies recommend
basic statistical charts (e.g., bar and line charts) for low-level ana-
lytical tasks such as finding distributions. They can hardly support
designing views in VA systems that deal with complex datasets
and tasks [29]. The existing VA design pipeline heavily relies on
researchers’ experience, requiring surveying related studies and
summarizing design requirements for new scenarios. Passing ex-
amples can offer valuable inspiration due to the multitude of design
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styles in existence [3, 25, 35]. To better support the designers and
researchers of visual analytics, inspired by research in creativity
support [58], we believe it is important to facilitate the ideation
process by enabling the exploration of previous VA view design.
However, without an effective indexing method, currently, these
view designs can only be searched through simple keywords, such
as domain problems, which cannot fulfill the requirements of VA
designers. Unable to search with more fine-grained requirements,
they struggle to draw inspiration from a large number of prior
successful designs.

To address the challenge, we aim to propose an indexing ap-
proach for view designs in VA systems collectively considering
tasks, data, and visualizations [46]. However, it is unclear how
to define an index structure based on these factors. For example,
from the visualization perspective, a VA design might contain a
hybrid use of different visual elements, such as composite visualiza-
tions [28] and glyphs [4]. When representing these complex designs
with indexes, preserving all details can lead to difficulties for design-
ers in specifying their searching criteria and understanding their
structure and semantic meanings. On the other hand, if the infor-
mation is over-abstracted to a high-level description, such as a few
keywords, designers may struggle to accurately express their de-
sign when searching for required design information from indexes
of returned visual designs. It is important to balance expressive-
ness and efficiency when designing the index structure. Therefore,
to understand designers’ requirements on the index structure, we
conducted a workshop study with 12 VA designers, most of whom
have published papers in the IEEE VAST conference as the first
author. With the study, we validated the necessity of indexing past
designs for creating new ones and collected the requirements for
constructing such an index.

Based on the user feedback from the workshop study, we for-
mulated an index structure named VAID for VA designs inspired
by Vega-Lite [54]. VAID enables an expressive characterization of
visualizations with analytical tasks and visual designs. To ensure
the coverage and comprehensiveness of the index, we iteratively
labeled the view designs and refined the keys and values of the
index structure. As a result, we gained 442 view designs from 124
VA systems and formed an informative index structure for them.
To demonstrate the usefulness of VAID, we conducted a user study
using a prototype for the exploration of VAID with 12 participants.
Specifically, we asked participants to query designs for specific
analytical tasks, data types, mark types, etc. User feedback showed
that VAID could help them query diverse and useful visual designs,
thereby aiding their design exploration. Leveraging the usefulness
of VAID in presenting view designs, we proceeded to conduct an
in-depth analysis and obtained findings into the patterns of VA view
designs. Finally, we concluded our research by discussing future
directions and limitations. The contributions of this paper include:

• requirements for understanding and indexing views in VA
derived from a workshop study;

• an effective index structure VAID for VA designs (including
analytical tasks and visual designs);

• a user study based on an exploration prototype1 to demon-
strate the usefulness of VAID;

1https://VIS-VAID.github.io/

• an in-depth analysis of existing view designs and research
opportunities based on VAID.

2 RELATEDWORK
This paper is related to studies about visualization indexing, visual
analytics design studies, and visualization typologies.

2.1 Visualization Indexing
Given that visualizations usually have complex structures of vi-
sual components, numerous studies investigate the indexing and
searching of visualizations. One way for indexing is by assigning
tags to the visualizations. Many visualization datasets collect vi-
sualizations and categorize them by types, such as MASSVIS [5],
VizNet [27], VIS30K [12], VisImages [17], and Many Eyes [62]. Tag-
ging visualizations is useful for machine learning model training,
but the tags have limitations when it comes to analyzing visualiza-
tion configurations. Important configurations like visual encodings,
compositions, and associated tasks are crucial for comprehending
the designs of visual analytics, and these aspects go beyond the
scope of traditional tags.

Computational methods have been used to extract and index
visualizations. For example, when retrieving SVG charts, to ensure
both the similarity of visual structures and data distributions, Li
et al. [38] proposed a method based on graph neural networks for
feature modeling. Hoque et al. [26] collected visualizations that are
implemented by D3.js and parsed the hierarchical structures of the
visualizations. However, parsing and analyzing bitmap charts is a
more challenging task compared to SVG charts. A series of methods
adopt computer vision methods to reverse-engineering visualiza-
tions [50, 55, 69, 71] or extracting numerical representations for
charts indexing [66]. Though effective, these methods might not be
applicable to the charts in visualization publications, which usually
have complex layouts and composite designs. In this work, we fo-
cus on analyzing visualizations in the context of visual analytics,
which poses higher requirements for data labeling. Specifically, it
not only requires labeling the meta information like chart positions
but also the information related to visualization literacy (e.g., visual
encodings and tasks). Our efforts form a valuable index structure
of visualization designs from state-of-the-art VA systems.

2.2 Visualization Design in Visual Analytics
Since the analysis problems and data structures are getting more
complex in recent years, visual analytics (VA) systems are equipped
with more features to fulfill the analytical requirements. Therefore,
researchers reflected on the scope and challenges of VA [30, 32]
and proposed a series of conceptual models. For example, Sacha
et al. [53] have proposed a knowledge generation model to char-
acterize VA systems and their use in sensemaking. According to
the model, VA systems should be well integrated into the human
knowledge generation loop from hypothesis and action to derive
the findings and insights. Moreover, they think that the VA system
is composed of three components, namely, data, visualization, and
algorithms, involving the pipeline of information visualization and
the process of knowledge discovery and data mining.

To design visualizations that are compatible with the knowl-
edge generation pipeline [53], Munzner [46] has proposed a nested

https://VIS-VAID.github.io/
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model for visualization design and evaluation. The nested model
consists of four stages: 1) domain problem and data characteriza-
tion, 2) operation and data type abstraction, 3) visualization design,
and 4) algorithm design. The first two stages are considered differ-
ent levels of abstraction of the data and tasks. With the abstracted
data and tasks, the design choices of visualizations can be further
derived based on the theories in information visualization, such as
expressiveness and effectiveness criteria [43] and the rules of visual
mapping [10, 47]. The nested model provides prescriptive guid-
ance for visualization experts in constructing VA systems. Inspired
by the model, we construct an index structure of visual analytics
describing visualizations from their analytical tasks and visual de-
signs. Compared to conceptual models, the structure we present is
a unique contribution to the community for data-driven analysis
and design inspiration to promote research on VA systems.

2.3 Visualization Taxonomy and Grammars
The classification of visualizations [14, 20, 23, 40, 44] has been
studied for a long time. For example, Borkin et al. [5] classified
visualizations into 12 categories, such as Area, Bar and Circle, each
comprising multiple sub-types. However, the designs of visualiza-
tions for visual analytics usually have novel layouts and complex
compositions. Chen et al. [13] have attempted to map each view in
VA systems to a specific visualization category in Borkin’s taxon-
omy. However, they discovered that a view might be ambiguous
to a specific category because many designs contain various visual
components of multiple categories. They reflected on the catego-
rization and proposed to follow Javed et al.’s theory of composite
visualization [28] to characterize the visual designs in further re-
search. Based on this reflection, we regard the visualizations in VA
systems as composite visualizations and characterize the relations
between the components with a hierarchical specification.

Grammars of graphics [63] are fundamental in visualization sys-
tems, indicating the visual mappings from data to visual channels
and layouts. Mackinlay [43] formulated visualizations as a graphi-
cal presentation problem and adopted relation tuples to specify the
data features and visual encodings. Heer et al. [24] proposed using
declarative languages to describe and specify the visualizations,
which is intuitive for the programmers. After that, Bostock et al. [6]
delivered D3, a programming grammar to operate on the graphical
elements of document object model pages. To further reduce the
burden of visualization specification, Satyanarayan et al. [54] pro-
posed Vega-Lite, a JSON-based declarative programming language,
by which users can render a visualization with even several lines
of JSON text. After that, specifying visualization using JSON files
becomes widely used, and similar languages are evolving, such as
ECharts [37]. In this paper, we refer to Vega-Lite and extend its
style to support the indexing of view designs in VA systems.

3 PRELIMINARY STUDY
We conducted a workshop study with VA designers to 1) understand
whether reviewing state-of-the-art visual designs can help visualiza-
tion designers in design inspiration and 2) obtain the requirements
for understanding and indexing VA view designs.

3.1 Data Preparation.
Before the study, we first prepared the state-of-the-art VA designs
and derived an initial index design based on tasks, data, and visual-
izations [53].

Collecting Figures.We first collected the figures of VA designs
based on VisImages [17], which consists of bitmap images collected
from IEEE InfoVis and VAST, the top venues for visualization and
visual analytics. We chose the papers in the IEEE VAST from 2016 to
2020, the primary venue for VA research (253). Then we identified
the papers that propose visual analytics systems, whose paper types
are commonly referred to as applications or design studies (124).
For each paper, we selected one figure containing the complete
system interface, which was usually the teaser.

Separating Individual Visualization Views. We further sep-
arated the area of different views in the system figures. In most
cases, a view is assigned a specific name for identification. How-
ever, a view sometimes consists of several independent sub-views.
If the data among sub-views are not directly related (such as shar-
ing the axes or connected with visual links), we decompose the
view into sub-views for different visualizations. Each sub-view is
regarded to be an individual visualization and is the basic analysis
unit throughout the paper. After the annotation, we obtained an
image collection of 442 views from 124 VA systems. For simplicity,
the term “view design” in the rest of our paper refers to the
design of a view in a VA system in default.

Annotating Task/Data/Type. Derived from VisImages, the
views include information about the chart types and their positions
but do not provide labels for the views (including sub-views) within
VA systems. We first characterize the view designs by tuples of
their task types, data types, and visualization types.

• For the task type, we used a task taxonomy of data anal-
ysis [1] for annotation. The taxonomy contains ten types
including retrieve value, derive value, filter, find extremum,
sort, determine range, characterize distribution, find anom-
alies, cluster, correlate, and compare. To avoid bias during
the annotation, we identified a task only when the original
authors had mentioned it explicitly. After the annotation,
98.87% (437/442) visualizations contain at least one task type.

• For the data type, we represent the encoded data by its
types in visual encoding channels. The data types include
quantitative (Q), temporal (T), ordinal (O), nominal (N), and
graph-related (G) data [54]. For a view design, we summarize
the counts of each data type, such as “𝑄 × 1, 𝑁 × 2.”

• We further labeled the visualization types of each visu-
alization. For most views, we adhere to the labels used in
VisImages, as they were originally assigned based on the
taxonomy outlined by Borkin et al. [5]. For a composite vi-
sualization, we characterize its type by decomposing it into
several visual components. For example, a scatterplot ma-
trix can be considered as nesting scatterplots into a matrix,
which is represented as a tuple: “(𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑝𝑙𝑜𝑡,𝑚𝑎𝑡𝑟𝑖𝑥).”

Based on the annotating result, we created a prototype named
VAID-Alpha. This interface includes the collected figures, associ-
ated tasks, data, and their respective types as searchable indexes.
Additionally, it features a search engine for direct access.
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3.2 Study Setup
In the workshop study, we asked participants to imitate the process
of designing visualization prototypes, with a specific focus on the
task of creating multiple views to accomplish VA tasks. We followed
the think-aloud protocol and gathered qualitative feedback from
participants.

Problem. We selected mini-Challenge 2 from IEEE VAST Chal-
lenge 2021, a classic problem in the visual analytics field, due to the
need for tasks and datasets with an appropriate level of complexity.
Specially, a company, GAStech, hopes to investigate employees’
potential private use of the company cars. To facilitate analysis, the
GPS data of each car, records of car assignments, and records of
credit card and loyalty card purchases are provided. In our study,
the participants are required to achieve three tasks by designing
visualization prototypes. The first task (T1) is designing visualiza-
tions with only credit card and loyalty card data to identify the
popular location and purchase time and potentially discover some
anomalies (e.g., weird purchase time and frequent changing pur-
chase location). The second task (T2) is using car assignment data
and GPS data to help determine the owner of each card and trying
to find some anomalies (e.g., the card owner and purchase activ-
ity are not in the same place). The third task (T3) is to reveal the
potential unofficial relationships between the employees.

Participants.We recruited 12 VA designers from social media
and our networks. The participants are postgraduate students (6
females and 6 males) with a research interest in visual analytics
for various domains, such as digital humanities, sports analysis,
medicine, and urban planning. Ten of them have published papers
in IEEE VIS as the first author. We asked participants to report on
their experience in designing visualizations for data analysis. Based
on the pre-study interview, 6 participants (P1, P3, P4, P8, P10, P11)
are Ph.D. students who have more than three years of research for
visual analytics, while 3 (P2, P9, P12) have less than one year and
the remaining 3 participants have less than two years. Specifically,
3 participants (P1, P3, P12) own bachelor’s degrees in design.

Procedure. Each trial of the workshop study was conducted
one-on-one via online meetings. A trial lasted about 60 minutes.
Before a trial, we first asked participants for their agreement to
collect their design process, comments, and results for research use.
After that, a study session started with a 15-minute tutorial intro-
ducing the prototype VAID-Alpha’s indexes (i.e., how we define
the data representations, task types, and visualization types) and
several examples illustrating how to use the interface. During the
study, participants were asked to explain how they understood the
problems and tasks and what and why visualizations they wanted
to design. The participants needed to sketch the prototype visualiza-
tions on paper and illustrate how to use the designs to accomplish
the tasks. The session ended with post-study interviews where we
gathered qualitative feedback from participants through a series of
questions.

3.3 Results
The overall reactions from the participants were positive. Here we
summarize the participant feedback.

0 25% 50% 75% 100%

Rank3

Rank2

Rank1

1

5

6

6

4

2

5

3

4
Data

Task

Visualization

Figure 1: The frequency of users’ preference rankings for
data, tasks, and visualization. For instance, 6 participants
ranked “Data” as their top choice.

3.3.1 Usefulness Analysis. From participant feedback, we found
that VAID-Alpha is useful for inspiring new design ideas and en-
hancing users’ original ideas. To understand the effect on the design,
we further analyzed the design process of the users including system
logs, audio recordings, and notes. In total, we obtained 36 visual-
ization designs from 12 participants, with 16 (44.4%) inspired from
scratch and 14 (38.9%) designs enhanced from an original idea. The
numbers also conform to the participant feedback, demonstrating
the usefulness of our system.

The system facilitates “warm-start”.We discovered that more
participants (P2, P5, P7, P8, P10, P11, P12) are inspired when work-
ing on T1 compared to T2 and T3. This might be due to the “cold
start” of the visualization design process, that is, contributing a
prototype from scratch requires inspiration and therefore might
be difficult at the beginning. The comments from P5, a junior PhD
student, evidenced this inference: “at the beginning, I have no idea
about the design. Therefore, I preferred to explore and find some inspi-
ration from the recommendations.” After finishing T1, her design for
T2 followed the previous idea with some enhancement provided
by the recommendations. P2, P7, P12, as junior researchers, also
shared a similar design process. Besides, senior PhD students (P8,
P10, P11) also tend to gain inspiration at T1. P10 commented that
he was inspired by a design similar to “storyline” after searching
with data types and came out with the original design.

The system should help users understand the design. Users
also expressed concerns about comprehension. Both junior (P2,
P3, P8) and senior (P10, P11) PhD students encountered problems
understanding the view designs. P2 noted, “I need to understand
the visual encoding for different designs,” appreciating textual expla-
nations about data structure and task types but still finding some
complex designs challenging to comprehend. P11 also thought that
the contextual information provided by the caption was insufficient.

3.3.2 Trade-offs between Data, Task, and Visualization. During the
study, we also surveyed users’ choices for data, tasks, and visual-
izations for searching visualization designs of interest. The results
are shown in Fig. 1.

“Data” is the most preferred.We discovered that 6 out of 12
participants ranked the data first, and five participants ranked it
second. The participants all agreed that data is the most critical
factor to consider during visualization design. P4, a senior urban
planning analyst, commented that “data and algorithms are the most
critical from the perspective of an expert”. The other two seniors,
P10 and P11, held a similar opinion. P5, a junior, also regarded the
data as her priority consideration for visual design, saying that “the
same data could be represented with different visual representations”.
However, knowing how many columns with different data types
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are encoded seems insufficient. P10 commented, “in real scenarios,
data transformation would be performed, and it might be more
important to tell how the data are mapped to the visual channels”.

“Visualizations” are more preferred by designers. Four par-
ticipants ranked visualization first, and three of them (P1, P3, P12)
are senior designers with bachelor’s degrees in design. An advan-
tage of searching by visualization types is the consistency between
the expectations and outputs. P1 liked searching by visualizations
because “visualizations are very intuitive for understanding and I
can imagine what results will appear”. Among three dimensions, P3
highlighted his preference for visualization:“when I search by visu-
alization, I prefer an exact match and exclude all designs without
my selection”. However, before applying the retrieved designs to
their own scenarios, users have to understand the visual encodings.
Both junior (P2, P3) and senior (P10, P11) Ph.D. students encoun-
tered problems understanding retrieved designs. P2 appreciated the
textual explanation about the data types and task types, comment-
ing that “the indication of visual encoding helps me to understand
the design easily”. They expected more detailed descriptions of the
visualizations, not only the types.

“Tasks” are mixed in understanding. Even though two par-
ticipants ranked tasks first, half of the participants ranked it the
last. A common problem is a gap between the original analytical
question and low-level tasks. P12 commented “I am fuzzy about
the task types, so I prefer to consider how to visualize all the data
first”. Besides, P10 pointed out that he cannot map tasks such as
“obtaining an overview” to low-level tasks. P3 explained that he
would have a different understanding of the tasks of the question.
Those comments call for continued efforts to classify the tasks in
VA systems for searching.

Discussion. Based on the observations above, the trade-offs
between data, task, and visualization during participants’ search for
designs might be related to two factors, including the accessibility
of the criteria for searching and the representation power of the
indexing approach used in the search engine. First, participants
might focus on the inputs and outputs of the process of designing
VA designs, which are available criteria for searching. Most partici-
pants ranked data as their top choice of search condition as data is
the most approachable one among data, task, and visualization. To
design a visual analytics system, researchers and designers usually
start with data exploration and then consider appropriate design to
visualize the data. On the contrary, participants who are good at
designing might turn to the outputs of the design, i.e., visualizations,
and opt to “regress” their desired design through searching. Visu-
alizations are graphical representations of the data, which might
be the intermediate search condition for the participants. As men-
tioned by P1,“ when I saw the column timestamp, location, and prices,
I immediately came across a line chart to represent purchases by time
and location. Then I searched the designs based on the line chart.”
In this case, the participant considered the data but chose to use
visualization as a representation of the data for searching. Analyt-
ical tasks are also important in deriving designs, but a common
problem is the gap between the original analytical question and
low-level tasks, which makes tasks uncertain at the early stage of
design. Moreover, an analytical task can be approached through
multiple design choices. For example, designers can use different
visualizations in different layouts (e.g., overloaded and mirrored) to

compare values [42]. Therefore, compared to considering tasks at
first, practitioners might turn to questions like how to represent the
data and what visualizations might be more aesthetically pleasing.

Second, participants might suffer from an insufficient capability
of VAID-alpha to represent VA designs. As discussed above, partici-
pants turn to visualization instead of data might result from the lack
of a more representative method to search visual designs. Moreover,
the tasks were not clear enough so participants chose not to use
the task as their first choice to search. To help practitioners better
retrieve designs and further understand their design preferences,
we concluded several requirements that might help improve the
representativeness of the VAID.

3.4 Requirements for the Index Design
We derived three key requirements for improving the current index
design according to the findings:
R1: Integration of data and visualization. Data and Visual-

ization are the most preferred. All users’ comments on data
and visualization mention the relations between data and
visual channels, namely, visual encodings. The indication of
visual encodings can help users better understand how the
data can be applied to the design. Inspired by the comments,
we aim to propose an efficient method to describe the visual
encodings in view designs.

R2: Description of visualization composition. Many view
designs are composite visualizations, and the composition
reflects the data relationship between visual elements. For
example, a common VA technique is the “glyph scatterplot”
where each scatter is represented by a glyph for additional
multi-dimension attributes. Such relationships are hard to
describe using existing methods. Additional descriptions of
such a relationship are required.

R3: More detailed descriptions of analytical tasks. Users’
difficulties in mapping real analytical questions to low-level
tasks might be because of the lack of analysis goals, such
as summarize, compare, and explore [7]. Comparing distri-
bution and summarizing distribution might require visual-
ization designs that are different in visual encodings and
layouts. Besides, graph-related tasks are not investigated in
depth. Therefore, we decided to incorporate additional task
taxonomies with multiple levels.

4 VAID
In this section, we introduce the process of index design based on
the above requirements. We intend to represent the index within
the JSON structure since the index may include nested elements
(R1, R2). In addition, we elaborated on task characterization using
the multi-level typology of VA tasks [7] (R3). Formally, we call the
structure “VAID” in the paper, which consists of a two-tuple:

𝑉𝐴𝐼𝐷 = 𝑇𝑎𝑠𝑘 + 𝐷𝑒𝑠𝑖𝑔𝑛 (1)

In the upcoming section, we introduce the task and design in detail.

4.1 VAID Task
Given that the low-level task taxonomy might be insufficient for
users to understand VA tasks, we improve the task structure based
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Figure 2: A VA task consists of a dual-key index. The action’s
value is selected from four classes, with each class having
a single subclass chosen, so as the target’s value. The task
“enjoy + values” is exemplified in red strokes.

on Brehmer and Munzner’s taxonomy of VA tasks [7]. In their tax-
onomy, a VA task is described with three levels, namely, why, what,
and how. The why level refers to the goals of VA, such as present,
compare, and browse. This level also describes human behaviors
during analysis, so it is named “action” [47]. Thewhat level explains
the analytical “targets” in VA, such as raw data, specific attributes,
or data patterns. Our current task taxonomy can be regarded as
a subset of these targets. Moreover, the how level describes the
methodology used to achieve the “actions” and “targets,” including
view designs and algorithms. In this work, we focus on the structure
of view designs for the how level and do not consider it a part of
the analytical task structure.

We use action-target pairs to describe the analytical tasks. The ac-
tions are the same as their definitions in the original taxonomy. For
the targets, we refer to Amar et al.’s low-level task taxonomies for
tabular data [1] and Lee et al.’s task taxonomies for graph data [34].
The classifications of actions and targets are summarized in Fig. 2.
The detailed annotation process for tasks is presented in the sub-
sequent subsection, conducted together with the VAID design. We
identified action-target pairs only when explicitly mentioned by
the original authors, and any disagreements during the process
were resolved following the same strategy.

4.2 VAID Design
For view designs, we aim to identify visual encodings inside, which
are the mappings from data to visual channels and layouts. Specifi-
cally, we regard each design as a composite visualization [15, 28].
We begin by recognizing the overall layout, such as faceting, and
then break it down into various visual components. Each com-
ponent is an independent visualization of specific types, such as
bar charts, line charts, and Sankey diagrams. For the designs of
well-crafted glyphs that are not just combinations of different visu-
alization types, we regard them as “others” type. Then we recognize
the visual encodings for each component.

We use Vega-Lite [54] as a starting structure because their JSON
syntax is intuitive for representing visual structures. Specifically, it
characterizes a visualization with the fields of “mark” and “encod-
ing”. In the field “encoding”, the data “field”, “type”, and “aggregate”
are further specified. Moreover, it supports basic visual composi-
tions, such as faceting, concatenating, and layering. We iteratively
developed the structure to cover the collected view designs and

annotated each design. The process of extension and annotation
consisted of the following four stages.

In the first stage, four authors annotated visualizations with
original Vega-Lite. We discovered that the Vega-Lite did not sup-
port the description of graph-related visualizations, such as Sankey
diagrams and tree visualizations, which are common visualization
types in view designs. In addition, complex visual compositions
are not supported, such as embedding glyphs in graph nodes. We
attempted to extend the structure based on the failed cases. We
extended the original Vega-Lite structure from three perspectives:

• First, we added additional data types (e.g., relational data)
and regarded “node” and “link” to be the two visual channels
of graph-related visualizations.We further specified the prop-
erties of the nodes and links, such as positions and widths,
under the “node” and “link” labels. An example structure is
presented in Fig. 4A.

• Second, to handle complex visual compositions, such as em-
bedding glyphs in graph nodes [19], we have added a com-
position type “nested”. The nested visualizations are repre-
sented by specifying the “parent” and “children” components.
We also use a key “canvas” to indicate which elements of the
parent are the embedded children components. The struc-
tures of the compositions, i.e., “concat,” “layer,” and “facet,”
and “nested” composition, are shown in Fig. 4B.

• Third, the mark types supported by Vega-Lite are also in-
sufficient for the representation of view designs. We have
extended the mark types by adding new ones like graph,
Sankey, and radar, referring to the typologies proposed by
Borkin et al. [5]. It is noted that the newly added mark
types are not graphical primitives that are elemental build-
ing blocks of the visualization. Instead, some of them are
“macros for complex layered graphics that contain multiple
primitive marks”[54], which are consistent with the defini-
tions of Vega-Lite. Fig. 4 provides an example of complex
composition relationships, such as nesting bar charts into
node-link graphs.

In the second stage, we independently annotated the views using
our labeling system, including tasks and designs, according to the
descriptions in the “Visual Design” and “Case Study” sections in
the original papers. In instances where the desired information was
unavailable, we reviewed the entire paper. Additionally, for the
design structure, we identified cases not addressed by the extended
structures. Weekly online discussions are conducted to synchronize
and address cases. The procedure includes initially creating a shared
document that outlines the structure and subsequently updating it
until all cases can be covered with the extended structures. A final
document incorporating design structure and annotation examples
for various cases was derived at that stage. In the third stage, each
author revised their annotation results using the document from
the second stage. One of the authors systematically compared all
results, labeling any disagreements. These conflicts were recorded
in our system, and resolution occurred through discussions among
all authors during weekly online meetings, resulting in updated
results directly. Finally, one of the authors double-checked the
results again for all details. As a result, we obtained the index
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Figure 3: We follow a Vega-Lite style to describe complex view designs. (A) Our formal index structure for visual designs and
(B) an example with the index. The structure for representing each chart, including marks and encodings, is simplified and
indicated using “[] part” with black text. To illustrate, we provide an example of the bar part in the upper left corner.

{

  concat: {

    layout: 

      '

       ',

  }，

  spec: [

    {vis_1},

    {vis_2}...

]}

horizontal/

       vertical/


crossing

{

   layer: [

      {vis_1},

      {vis_2},

      ...

   ]

}

{

  nested: {

    parent: {

      canvas: ,

      mark: ' ',

      encoding: {}

    },

    children: {

      mark: '...',

      encoding: {}

    }

}}

'node'
...

{

  facet: {

    row: {},

    column: {},

  }，

  spec: {

    mark: ' ',

    encoding: {} 

  }

}

...

Nested

{

  mark: ' ',

  node: {

      field: {...},

      type: ' '

      x: {...},

      y: {...},

  }，

  link: {

      field: {...},

      type: ' '

      width: {...},

}}

graph

node

relational

Concat FacetLayerGraph-Related

A B

Figure 4: Example indexes of (A) graph-related visualizations and (B) visualizations with different compositions.

structure for VAID design (Fig. 3) and annotated 442 view designs
following the structure.

During the annotation, we followed the idea of consistency. In
detail, we annotated the view while striving to preserve the original
Vega-Lite structure as much as possible. Compared to the original
Vega-Lite structure, we extensively expand the properties of com-
position, marks, encoding types, and data types based on the VA
designs we collected. It is noted that the Vega-Lite structure also
provides powerful operators for data transformations, such as fil-
tering. However, in VA research, many techniques involve complex
data processing methods, such as dimensional reduction, and the
classification and identification of these methods are challenging.
In this work, we currently focus on view designs and only use part
of the Vega-Lite structure to characterize visual encodings (e.g., ex-
cluding style-related parameters) that help for better view indexing
and understanding.

Moreover, we followed the idea ofminimization, i.e., choosing the
one with the least number of duplications, to address the problem

when there are multiple solutions to a visualization. For example,
the component in Fig. 3(B2) can be regarded as “a layered visual-
ization with a density plot and a graph” and “a facet visualization
whose elements are pie charts” from the perspective of implemen-
tation. The positions of the graph nodes and pies both repeatedly
encode the row and column attributes. Referring to the original
descriptions [21], the pies without links would fade out, indicat-
ing a one-to-one mapping of the graph nodes and pies. Therefore,
it would be more appropriate to consider the visualization as a
layered one composited by a density plot and a nested graph visual-
ization (pie charts embedded into the nodes). For another example,
a faceted visualization can be considered as a concatenation of a
list of similar visual components. Representing the chart with “con-
cat” has to duplicate the structures of similar visual components
multiple times. Instead, it is much neater and more accurate to use
“facet” to represent it in the context of data visualization.
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Figure 5: The VAID Explorer contains a filtering view (A), an indexing view (B), a gallery view (C), and a detail view (D).

5 EVALUATING VAID THROUGH
QUESTION-BASED USER STUDY

We conduct a user study to evaluate if VAID can assist users in view
design. To allow users to experience the design search using VAID,
we developed a prototype system named VAID Explorer. In this
section, we first provide a brief overview of the prototype, followed
by an in-depth discussion of the user study.

5.1 VAID Explorer
We will present the prototype and describe how it is used in the
following section.

The prototype includes a filtering panel (Fig. 5A), a gallery view
(Fig. 5C), an indexing view (Fig. 5B), and a detail view (Fig. 5D).
The filtering panel (Fig. 5A) supports view design search. Users can
select values corresponding to different keys introduced in Sec.4.
We also develop an indexing view (Fig. 5B) that enables users to
input structural indexes with JSON syntax. The retrieved results
will be displayed in the gallery view (Fig. 5C). When clicking on a
result, a detail view (Fig. 5D) will pop up, showing the VAID along
with other contextual metadata (e.g., paper title, paper keyword,
figure caption). Users can also explore the designs of other views.

Figure 6: A usage scenario usingVAID to design new visualiza-
tions for visual analytics. The prototype supports searching
view designs by detailed indexes (A) and key values (B).

We present a concise scenario featuring Sherry, a visualization
researcher in the field of urban planning, to demonstrate the usage
of the prototype. She was given a dataset about credit card records,
where there are four columns of “card id,” “time,” “store,” and “item
name.” She wants to identify the most popular purchasing time and
store, but she’s uncertain about how to represent this data. With
the VAID Explorer, she first starts from the filtering panel (Fig. 5(A))
and selects two data types, nominal and temporal. Retrieving 46
view designs, she explores the results and discovers that the third
example (Fig. 5D) can show the data across “time” and “store.” To
further show the popularity of different times and stores, she won-
ders how to show distribution with a similar design. She copies the
index of this design into the indexing view (Fig. 6A). She revises and
only keeps the sub-structure of the index, and selects the target of
“distribution” (Fig. 6B). She identifies a design with bar charts and
area charts showing the summarization of the nominal dimension
and temporal dimension, respectively. Based on the example, she
has some preliminary thoughts on the view design.

5.2 Study Setup
Our goal is to understand if participants can understand the re-
trieved designs (e.g., visual encodings) using VAID and use the
prototype to obtain design inspirations for VA problems. Specifi-
cally, we ask participants to search for visualizations to solve six
well-designed VA problems and subsequently, design views. The
VA problems have varying complexity and are related to specific
analytical tasks, mark types, composition types, or data types, such
as “to find visualizations that encode a three-dimensional dataset
with a nominal, a quantitative, and a temporal field” and “to find
VA designs for comparing distributions”. For the design task, we
choose Mini-Challenge 2 from IEEE VAST Challenge 2022 [11]. The
detailed list can be found in the supplementary material. Given the
retrieved results, participants were asked to explore the results and
select one visualization of interest for in-depth investigation, that
is, to understand the design by reading images, indexes, and other
metadata (e.g., titles and captions). Lastly, we ask participants to
explain the design of the visualizations.

Participants.We recruited 12 visualization practitioners (U1-
U12) from our institution through social media and word-of-mouth
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who reported having experience in creating visualizations for data
analysis. The participants include 5 females and 7 males with vari-
ous backgrounds, including computer science, urban, and digital
media design. They are used to analyze data with toolkits such as
Python, R, and MATLAB for data analysis. In addition, the libraries
they use for data visualizations are Vega-Lite, Excel, Python Mat-
plotlib, and Javascript D3. The participants in this user study all
have adequate data visualization or design knowledge but have
varying expertise in designing more complex VA systems.

Procedure. All studies were conducted through one-on-one
online meetings. Each study consisted of two sessions: a training
session (15 minutes) and an experiment session (20 minutes). In the
training session, we introduced the definitions of VAID, including
taxonomies of task and design. Then we introduced the use of the
prototype. All participants were allowed to use and explore the data
freely to get familiar with the prototype. In the experiment session,
each participant was asked to accomplish seven questions (or tasks,
but to avoid confusion with the “task” dimension in VAID, we use
the term question here). During the whole study, we followed
the think-aloud protocol. Participants were requested to speak out
about their understanding of the retrieved view design and their
thoughts about the VAID or prototype when accomplishing tasks.
The study ended with a post-study interview session as well as
a questionnaire for rating the VAID from different dimensions.
The whole user study lasted about 1-1.5 hours. Each participant
received $9 as compensation. The authors took notes to record
feedback during the study.

5.3 Results and Feedback
All users successfully found the required designs and comprehended
the design using VAID. For Question 7, they designed and sketched
several views. All sketches can be found in the supplementary ma-
terials. The quantitative results from the participants were very pos-
itive, as shown in Fig. 7. Eleven out of twelve participants strongly
agreed that based on VAID, the prototype helps to find useful visu-
alization designs for achieving the VA tasks in the study. Similarly,
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Figure 7: User ratings from the perspectives of understand-
ability, interpretability, satisfaction, usefulness, and diver-
sity. The number on the right illustrates the average score
and the 95% confidence interval.

10 participants strongly appreciated the diversity of VA designs in
VAID Explorer.

VAID is easy to understand and benefits design understand-
ing.Most users (11/12) find VAID easy to understand. Some (U1)
attribute this ease to their familiarity with Vega-Lite, facilitating a
swift adaptation. Others, unfamiliar with Vega-Lite, emphasize the
significance of VAID’s JSON format and declarative language for
clarity. U6 further emphasized that basic chart knowledge aids in
understanding VAID’s design structure. Additionally, users appre-
ciate VAID’s role in simplifying visual encoding comprehension.
U5 and U7 noted that VAID complements textual elements like
titles and captions, offering insights beyond what these elements
convey alone. U1 underscored VAID’s importance in clarifying
glyph-related aspects to prevent uncertainties in visual interpreta-
tion. Their viewpoint confirmed the fulfillment of design require-
ment R1. Despite its clarity, U7 still mentioned that referencing the
research paper may still be necessary for more complex aspects.

VAID Explorer enables users to swiftly derive initial de-
signs based on the given question. All users start Question 7
very quickly. For example, U12 started by selecting different combi-
nations of “actions” and “targets” values that might conform to the
questions and said, “Previously, I required time to grasp background
information; however, now I can randomly select filter parameters to
explore potential designs. Examining these designs helps me better un-
derstand the question and formulate a vague initial design as a start-
ing point.” Users agreed that the structure of VAID aligns with com-
mon design strategies, wherein they typically approach the view
design by considering data, task, and visualization. U11commented
“The filter options align with my way of thinking about the design
question. I find it easy to kickstart the process, given that the question
description provides the necessary information. Subsequently, I can
quickly discover inspiration.”

VAID facilitates comprehensive search. The majority of par-
ticipants expressed satisfaction with the search results during the
exploration. Users pointed out, “While exploring, I aim to retrieve
all pertinent designs without any omissions.” U6 complimented, “My
personal preferences may introduce biases and potentially result in
overlooking valuable papers. The use of the system, however, ensures
a more thorough exploration.” Additionally, U4 highlighted, “It oper-
ates as a knowledge-based retrieval system, effectively supplementing
my knowledge.” Compared to the preliminary study, the extension
of VAID facilitates more flexible search options. Specifically, U3
and U5 appreciated the flexible task options when designing a
multi-view VA system. They emphasize its effectiveness within a
VA system, where the task’s target remains constant while actions
vary between views. U5 also commented with an example, ‘‘VAID
enables designing VA systems in a manner of progressive exploration,
identification, and localization of anomalies.” Their opinion verified
that the design requirement R3 had been fulfilled. However, even
with the enhanced flexibility in search options provided by VAID,
some users still faced challenges while choosing actions. U11 ex-
pressed that the concise one-word descriptions lack intuitiveness.
She suggests, “including examples and images as hints would help me
make more informed task choices.” With the development of large
language models (LLMs), a potential solution is to introduce an
LLM to help translate the analytic questions into abstract actions
and targets, which might lower the burden of using the system.
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Moreover, the search function was praised by users for its user-
friendly nature, as U11 said, “The filtering and indexing view can
complement each other. While the filtering is easy to use but less pre-
cise, the index search can assist in retrieving more specific designs, like
a bar chart with temporal data on the x-axis.” Despite the positive
feedback, there is room for improvement. The current combination
of multiple options may result in limited or no results, potentially
leading to neutral satisfaction among some users as shown in Fig. 7.
U12 recommended incorporating a partial matching mechanism
to guarantee a significant number of retrieved designs, even un-
der slightly stringent conditions. U8 echoed similar sentiments,
proposing the addition of a recommendation mechanism akin to
common search engines. Additionally, U5 expressed a desire for
improved linkage between the filtering view and the indexing view.
He mentioned, “Typing a JSON structure from scratch is not easy,
but editing one is simpler.” U5 hoped for an initial draft in the index
view after selecting options in the filtering view. Therefore, valid
ranking mechanisms and linkage query functions for view designs
can be developed in the future to support an effective visualization
query system.

VAID facilitates incremental design, helping users refine
their designs step by step. View designs are mainly composite
visualizations [15], which can be further broken down into vari-
ous basic charts (Sec. 4.2). Designers usually start from one basic
visualization type that can be decided. For example, many users rec-
ognize “maps” in Question 7 due to the urban scenario. Some users
also search for initial designs by integrating data, tasks, and their
expertise. Building upon this concept, the VAID Explorer empowers
users to employ basic visualizations as search parameters, enabling
the design of intricate and extended designs (R2). U10 stated, “I
usually use several basic charts to meet design requirements. After
that, I explore ways to refine the design by integrating these charts
into a unified view.” She believed that using our tool makes this
refinement step easier than before. U9 conveyed a strong apprecia-
tion for layouts, citing challenges in keyword-based searches due
to reliance on personal knowledge, “VAID Explorer addresses this
by offering nested or layered layout options”. This preference aligns
with sentiments from U5 and U7, who stress spatial constraints in
VA views and the importance of thoughtful layout choices within
limited space. Meanwhile, some users also suggest that the com-
plexity of the design allows for a selective approach to the retrieved
designs. For example, in Question 7.3, U7 may opt to utilize only the
color and size encoding within a view design from TPFlow [39]. U5
also employed a similar approach. Initially, he selected the circular
bar design from one view in [72], and later chose the area chart
design from one view in [70] to address the question.

VAID enhances design aesthetics. VAID not only aids in com-
pleting a design but also provides additional assistance, as high-
lighted by U2, who pointed out that VAID contributes to enhancing
aesthetics during view design. Moreover, users may further im-
prove the design using VAID, even when it effectively achieves the
intended task. For example, in Question 7.1, U9 initially obtained
a design that satisfied the question. However, upon observing a
particular view in Volia [9], she recognized the potential of using
quadrilaterals or hexagons as the smallest units during map seg-
mentation, which helped her to refine the design accordingly. In
Question 7.3, U6 noticed that bar charts were commonly used in

previous designs, leading to boring designs that lack adequate nov-
elty. This prompted U6 to explore alternative views within the last
referred VA interface, aiming for more varied designs. By combin-
ing this exploration with insights from the VAID structure, U6 took
a radical approach.

6 THE ANALYSIS OF VA DESIGN COLLECTION
USING VAID

After validating the usefulness of VAID, we explore the “design de-
mographics” [2, 26] based on VAID for view designs with collected
views in Sec. 3.1, which demonstrates VAID enables fine-grained
exploration and understanding of existing view designs. In par-
ticular, we report on the statistics, including the frequency and
co-occurrence patterns for the analytical tasks and visual designs.

6.1 Overview
We first analyze the indexes to understand the composition of
visualization designs in visual analytics.
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Figure 8: Overview of the view designs in terms of composi-
tions.

Only 38% view designs can be implemented with Vega-Lite.
We investigated the indexes and opted to understand whether these
visualizations can be implemented with common compositions
(layer, concat, and facet) of basic mark types with Vega-Lite. We
discovered that only 38.2% (169/442) designs could be specified with
pure Vega-Lite structures. The results indicate that researchers tend
to use novel techniques in VA systems to visualize the data, which
demonstrates the unique value of our structures. The limitations
of Vega-Lite mainly lie in the limited mark types and the lack
of support for graph-related data and nested visualizations. The
limited expressiveness of declarative visualization grammars may
be a reason for the result that the visualization designs of most
existing VA systems are implemented with lower-level Javascript
libraries (e.g., D3.js), as they could provide flexible customizations
for the designs.

About 64% view designs are composite visualizations. Com-
posite visualizations combine multiple visual components together
along specific directions (e.g., “layer”, “concat” and “facet” in Vega-
Lite) or in a hierarchical manner (i.e., “nested”), which can make the
visual components well-organized and easy to interpret. As shown
in Fig. 8A, 63.8% (282/442) of the view designs contain composite
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visualizations. We focus on the number of composition labels in
a structure. Fig. 8A shows that 34.8% (154/442) of visualizations
contain only one composition. 3.6% (16/442) visualizations contain
at least four compositions. A visualization can have several types
of compositions (four different types in total). Only one visualiza-
tion has used the maximum number of different composition types,
which is four (Fig. 8B). Fig. 8B shows that most visualizations have
no more than two composition types.

90% composite visualizations have a hierarchy level ≤ 2.
As described in subsection 4.2, the visualization is represented in a
hierarchical JSON syntax with multiple levels of composition. For
example, the visualization presented in Fig. 3 has a composition
level of three. For composite visualizations, 54.6% (154/282) have a
level of one, 34.0% (96/282) have a level of two, and 8.1% (23/282)
have a level of three. Only 9 visualizations have a level of four,
which is the maximum level of the hierarchy. The numbers indicate
that most composite visualizations only use one or two levels of
composition. Adding more levels of composition demands encoding
more data columns, which might go beyond the requirement of
analysis scenarios. Moreover, more levels of composition increase
implementation difficulty and visual complexity.

More compositions,more tasks achieved. Investigating VAID,
we discover that all visualizations have at least one action-target
task. The ones with composition achieve 1.49 tasks on average,
while the ones without composition are designed for 1.33 tasks on
average. Fig. 8D shows the average number of tasks vs. the number
of compositions. Overall, the number of tasks to be solved will
increase with the increase of compositions.

6.2 Frequency Analysis
We then report on the frequency of different property values and
findings in VAID.

Actions: “low-level” actions are the most used analytic ac-
tions. As shown in Fig. 9A, present is the most frequent action. The
results show that many designs are merely used for data exhibition.
Therefore, we excluded present in the later analysis since designers
commonly use terms like “show,” “visualize,” and other ambiguous
words to explain their use of such view designs. After excluding this
category, compare, identify, and summarize are the most popular.
These three actions are categorized into “low-level” query actions
by Brehmer and Munzner [7]. For the goal of searching, explore
is the most popular one, which stands for exploratory analysis.
Interestingly, we did not discover designs that are used for enjoy,
showing the difference between visual analytics and infographics.

Targets: domain-specific values are the most popular tar-
gets. From target distribution (Fig. 9B), we discovered that the
most popular target is value, which refers to visualizing values
that are computed from metrics or algorithms. This reflects the fea-
tures of VA, which closely collaborates with domains and utilizes
data mining techniques for data preprocessing. Distribution and
correlation are the second and third popular targets. The results
demonstrate that understanding the correlations and distributions
of the attributes are the key indicators for data patterns in VA. For
graph data, links and the whole graphs are the most frequently
visualized targets.

Compositions: simple is preferable.Composition distribution
is presented in Fig. 9C. Facet, which organizes visualizations of the
same types by rows and columns, is the most used composition type
in VA. This simple composition conveniently visualizes one or two
more dimensions with simple visualization building blocks (e.g.,
scatterplot matrix). Concat is the second popular type, which refers
to placing visualizations with different types side by side. Nested
composition is not covered by the original Vega-Lite. Although it
has the smallest proportion, it accounts for more than 10%.

Marks: basic types dominate. In a composite visualization,
each visual component is regarded as a specific mark type. We
display the mark types that have more than 20 records (Fig. 9D).
The distribution demonstrates that bar, point, line, and rect are the
most popular mark types, which are also basic mark types in Vega-
Lite. For the types that Vega-Lite does not cover, graph and unit [49]
visualizations rank 5𝑡ℎ and 7𝑡ℎ among all types. The type others
ranks 9𝑡ℎ , indicating that glyph visualizations are also commonly
used in view designs.

Channels: most relate to the Cartesian coordinate system.
We show the visual channels with more than 10 records in Fig. 9E.
The channels x, y, and color are the most popular. The channels
link and node are also frequently used because of the graph-related
visualizations, such as Sankey diagrams, graphs, and trees.

Data Types: about 90% fields are quantitative and nominal.
Among all data types, quantitative data and nominal data are the
most frequently encoded in the visualizations (Fig. 9F), followed by
node data, which is commonly used in graph data.

Aggregate: binning/counting, or more complex operations.
Aggregate types are labeled based on Vega-Lite aggregation oper-
ations (Fig. 9G). Aggregate count and bin are the most frequently
used types, which are usually because of the visualization of his-
tograms. Other aggregate types are not frequently used in view
designs. The reason might be that complex data processing meth-
ods and metrics are adopted in VA, instead of basic aggregation
strategies, such as sum, median, and variance.

FieldNames: time and feature analysis aremain characters.
Field names are the terms used in the original VA research papers
describing the fields. We show the word frequency of field names
using word cloud (Fig. 9H). From the word cloud, we immediately
discover that the words time, feature, metric, and dimensionality
reduction have a relatively large size, indicating the values about
these terms are frequently used in VA research.

7 DISCUSSION
In this section, we discuss the potential avenues for future research
on VAID and its limitations.

7.1 Opportunties for Future Research
We identified multiple research opportunities grouped into three
primary avenues.

First, VAID offers the potential to enhance view design as-
sessment. While our statistical analysis of 442 designs has yielded
valuable insights (Sec. 6), there remains an opportunity for deeper
analysis through the integration of VAID. For example, in the cur-
rent process of VA design, the selection of design alternatives is
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Figure 9: The property distribution of view designs: actions (A), targets (B), composition types (C), mark types (D), visual
channels (E), data types (F), aggregate types (G), and field names (H).

mainly guided by design principles [64]. VAID can retrieve poten-
tially useful designs regarding data and tasks, which complements
design alternatives for a more comprehensive discussion and justi-
fications. Such an index structure accompanied by a database can
help to improve the rigor of VA research. Future research can fo-
cus on developing an evaluation method for VA designs based on
VAID since this structured approach transforms abstract designs
into a more analyzable format, enabling the application of various
analysis techniques (e.g., regression, clustering).

Second, VAID presents the opportunity to simplify com-
parisons of view designs. Although VA designs have long been
criticized for their over-crafted designs for specific domain prob-
lems [64], they might share similarities in specific views, compo-
nents, and tasks. As highlighted by U5 and U9, the importance of
comparing designs cannot be understated during the exploration
process. VAID allows for comparisons in different dimensions, re-
vealing both commonalities and differences in analytical tasks and
visual designs. Future research can focus on enhancing the effec-
tiveness of comparisons between different designs.

Thirdly, we envision VAID as an initial step toward en-
hancing the automation in VA. While there have been efforts
to automate the creation of visualizations [65], there has been lim-
ited exploration of automation within the realm of complex VA
design. Automating VA design requires large-scale datasets in need
of training, which necessitates detailed information for VA designs.
One challenge in this regard is the mismatch between the intensive
visual information conveyed and the limited accessible information
through captions and figures. In this regard, VAID takes on a crucial

role as an initial step in augmenting the accessible information. Ad-
ditionally, we encourage the open-sourcing of more VA systems, as
they represent valuable outcomes of iterative design. The designs
and system code shared through open-source projects will serve
as valuable resources for the community. Through these collective
efforts, we can gradually simplify the production process of VA
systems, ultimately achieving automation in VA design.

7.2 Limitations
As a first attempt to construct an index structure for VA design
from the perspectives of tasks and visual designs, our work has
several limitations that warrant future research.

Interactions. Interactions are important features of VA systems.
However, it is difficult to recognize the interactions from VA de-
signs, even in an entirely manual manner, since not all interactions
within/between views are introduced in the original papers. More-
over, the use of static images hiders our analysis of configurable VA
systems (e.g., Turkay et al. [61]), as the configuration frameworks
are not reflected in the images. Facilitating better analysis of view
relationships requires parsing live VA systems and constructing the
data flow between views.

Generalizability. In this study, we designed and evaluated VAID
based on high-quality VA designs from top-tier conference papers.
These designs make up a corpus that comprises composite and
multiple-view visualizations, which were recognized to be com-
plex and hard to understand [64]. As a result, VAID is capable of
representing visualization designs with complex structures. We
believe that VAID can be used to index and represent a wider range
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of visualization designs, such as infographics, which are usually
facilitated with novel layouts and glyphs [68] that improve the
expressiveness of information. However, it introduces additional
challenges because infographics usually contain distorted graphical
elements for metaphoric representation [67] and the combination
of additional modalities, such as text and images. In this study, we
started from the VA community and derived VAID as a kickoff for
the research of indexing such complex visualizations. It requires
future research to evaluate and extend VAID with a more general
dataset.

Evaluation. In our two in-lab studies, participants are required
to complete the VAST mini-challenge in a short time. We hope to
synthesize the scenario of creating VA designs, but real-world VA
design often involves collaboration with domain experts. While
we tried to avoid tasks requiring specialized knowledge, fully sim-
ulating authentic collaborative scenarios remains a challenge. In
the future, we hope to carry on a field study with VAID, asking VA
experts to use VAID in their routine design process, observing their
behaviors, and gathering more comprehensive feedback from their
experience.

Scalability. In this work, the scalability of annotation is limited
because it requires extensive visualization knowledge for annotat-
ing such a fine-grained structure. Our work is rooted in the fact
that there lack of practical rules and guidance in decomposing view
designs in VA. As a starting point, we manually annotate and fine-
tune the structure iteratively with a workshop study, aiming to
construct a solid foundation for the indexing. Such manual efforts
were expensive and resulted in a relatively small dataset size. In the
future, we plan to improve VAID with a combination of machine
learning methods. These methods not only ease the effort of man-
ual labeling but also enhance the information available. In terms
of the former, approaches like VisImages [17] leverage computer
vision models to detect view locations in research papers. Efforts
can also be made to extract visual structures such as maps [51],
charts [50, 55, 69], and PowerPoint slides [56]. It is possible to adopt
deep learning models to detect the positions of visual elements and
reconstruct their relations. Regarding the latter, additional informa-
tion can be valuable. For instance, utilizing computer vision models
to derive color palettes aids in analyzing the emotional tone of de-
signs [33] and inspires future designers [57]. Annotations and other
text information extracted using OCR techniques [45] from charts
can serve as supplementary material, aiding users in understanding
essential information such as the data narrative and context [52].

8 CONCLUSION
We built an index structure, VAID, from visual analytics research
papers. The structure features an index for describing complex VA
designs from the perspectives of analytical tasks and visual designs.
VAID is constructed iteratively through a workshop study with 12
VA designers. The structure provides opportunities to understand
and utilize state-of-the-art visualization designs, which are demon-
strated through a user study. However, given that designing a visual
analytics system is a complex procedure, we note that our work is
the first step toward understanding and indexing VA systems. We
hope that our VAID and lessons learned could provide a helpful
foundation for further research.
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