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a b s t r a c t

Contemporary urban transportation systems frequently depend on a variety of modes to provide
residents with travel services. Understanding a multimodal transportation system is pivotal for devising
well-informed planning; however, it is also inherently challenging for traffic analysts and planners. This
challenge stems from the necessity of evaluating and contrasting the quality of transportation services
across multiple modes. Existing methods are constrained in offering comprehensive insights into the
system, primarily due to the inadequacy of multimodal traffic data necessary for fair comparisons
and their inability to equip analysts and planners with the means for exploration and reasoned
analysis within the urban spatial context. To this end, we first acquire sufficient multimodal trips
leveraging well-established navigation platforms that can estimate the routes with the least travel time
given an origin and a destination (an OD pair). We also propose TraDyssey, a visual analytics system
that enables analysts and planners to evaluate and compare multiple modes by exploring acquired
massive multimodal trips. TraDyssey follows a streamlined query-and-explore workflow supported by
user-friendly and effective interactive visualizations. Specifically, a revisited difference-aware parallel
coordinate plot (PCP) is designed for overall mode comparisons based on multimodal trips. Trip groups
can be flexibly queried on the PCP based on differential features across modes. The queried trips are
then organized and presented on a geographic map by OD pairs, forming a group-OD-trip hierarchy
of visual exploration. Domain experts gained valuable insights into transportation planning through
real-world case studies using TraDyssey.

© 2025 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Residents in modern metropolises can adopt various trans-
ortation modes to fulfill their travel needs, such as walking, cy-
ling, public transit, and driving. Each mode offers distinct advan-
tages and disadvantages. For instance, cycling is environmentally
friendly and low-carbon but unsuitable for long-distance travel,
hereas driving is appropriate for long-distance trips but gener-

ates exhaust emissions and is susceptible to delays due to traffic
ongestion. Transportation authorities leverage these differences
to optimize urban transportation through targeted policies aimed
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at specific objectives. For example, to promote low-carbon and
nvironmentally sustainable practices, authorities might imple-
ent a public-traffic-priority policy to encourage greater use of
ublic transportation (Chow et al., 2021; Malandraki et al., 2015).

Conversely, to enhance overall urban operational efficiency, a
balanced development of multiple transportation modes may be
pursued.

Understanding existing multimodal transportation is a prereq-
uisite for informed policy-making. Urban experts need to deter-
ine which mode is preferred by residents, assess how much
etter Mode A is compared to Mode B, and understand the rea-
ons behind residents’ preferences for Mode A. Initially, Dekoster
et al. (2000) created line charts with travel distance on the x-
axis and travel time on the y-axis, according to the speed of each
ode, providing a theoretical comparison of different modes. For

 more realistic assessment, traditional methods primarily relied
n surveys (St-Louis et al., 2014; Cain et al., 2009; Cao et al., 2016;
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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Tao et al., 2019) to collect resident feedback. This approach is
labor-intensive and time-consuming.

The rapid development of sensing technology has resulted in a
large amount of trip data, enabling the evaluation of multimodal
urban transportation in a data-driven manner. Specifically, a trip
describes how (i.e., the travel time and route) a resident travels
between an OD pair (i.e., from an Origin to a Destination) using a
specific mode (e.g., walking). Researchers have compared travel
time (Jensen et al., 2010; Faghih-Imani et al., 2017; Su et al.,
2023), travel time variability (Durán-Hormazábal and Tirachini,
2016), travel choice (Zhou et al., 2019b), pollution emission (Do
t al., 2014; De Nazelle et al., 2012), and convenience (Li et al.,

2018) of different modes by leveraging the statistics of trips.
However, existing studies are limited to computational com-

parisons at a very coarse spatial granularity, which hinders in-
epth exploration and interpretation. First, spatial context-aware

exploration is necessary since the performance of different trans-
portation modes varies across the urban space. For instance, while
the city is generally convenient for residents to use public transit,
experts need to identify and address areas where transit is less ac-
cessible (Fig. 1 c⃝). Furthermore, beyond statistical analyses with
umeric figures, intuitive presentations of the multi-dimensional
ttributes (e.g., travel time, distance, and route) of transportation
odes are essential for experts to interpret and compare mode
erformance comprehensively. For example, the routes where
ublic transit is the fastest often align geographically with the
ublic transit network (Fig. 1 a⃝ and b⃝). Similarly, cycling can be
aster than driving between locations near expressways due to
raffic congestion (Fig. 1 a⃝ and c⃝).

The gaps between existing methods and complex analysis
asks motivate us to develop a visual analytics approach for
n-depth and exploratory evaluation of multimodal urban trans-
ortation at finer spatial granularity. Developing such an ap-

proach poses three challenges:
Data Acquisition for Fine-Grained Comparison. The compar-

tive analysis of multiple modes across urban spaces requires
ubstantial trip data from different modes, with consistent spatial
nd temporal ranges, to ensure an in-depth and fair comparison.
et, even in New York, one of the pioneering cities in urban
ata transparency, only cycling and driving trips with the same
ime of day, origins, and destinations are available (Faghih-Imani
t al., 2017). A new data acquisition method is required to obtain

sufficient and detailed trip data applicable to all cities.
Multifaceted Analysis of Multimodal Trips. The comparison

f multiple transportation modes and the evaluation of multi-
odal transportation systems involve several aspects, such as
patial selection and filtering, numerical comparison of travel
times, spatial context understanding, and performance reasoning.
hese aspects are heterogeneous and cannot be fully addressed

through purely computational methods or single visualization.
t is necessary to design a visual analytics system with interac-
tive and coordinated visualization to support the multifaceted
presentation and exploratory comparison.

Many-to-Many Comparison of Multiple Modes. The basic
pair-wise comparison analyzes whether mode A is generally bet-
ter (worse) than mode B and how much better (worse) it is.
When dealing with multiple modes, such a pair-wise assessment
should be extended to a many-to-many comparison framework.
or example, if mode A outperforms mode B much, it prompts
xploration into the comparative performance between mode A
nd another mode C and quantifies the extent of this superi-
rity. A many-to-many comparison should be established and
ncorporated into the visual analytics system.

In this study, we propose TraDyssey. For the first problem,
raDyssey leverages advancements in route planning and travel

time estimation provided by established navigation systems (Dai
19
Fig. 1. Motivation Illustration. Both the locations a⃝ and b⃝ are close to the
subway lines, and thus, taking public transit between them is convenient. The
location c⃝ is not close to any subway line but close to the expressway, and
thus, driving may be convenient for citizens here to travel to the location a⃝;
However, cycling is actually faster than driving due to traffic jams.

et al., 2020; Fang et al., 2020). We acquire extensive trip data pre-
dicted by these systems across a wide range of origins and desti-
nations within the study area. For the second and third problems,
TraDyssey implements a hierarchical structure encompassing trip
groups, OD pairs, and individual trips. This structure provides
users with a flexible framework for the interactive exploration
of massive trip data and facilitates the visual comparison of mul-
tiple modes. Specifically, TraDyssey coordinates a revised parallel
coordinate plot (PCP) and a geographic map. The revised PCP elu-
cidates mode differences derived from multimodal trips, serving
as an entry point for many-to-many comparisons and supporting
numeric analysis, while the map primarily enables geographic-
aware exploration and reasoning of trips queried in the PCP.
TraDyssey is evaluated with real-world case studies performed
by domain experts and received positive expert feedback.

In sum, the contributions are as follows:

⋄ A data acquisition strategy to collect massive trips for fair
city-wide comparison of multiple transportation modes;

⋄ TraDyssey, a visual analytics system based on multimodal
trips for evaluating multiple transportation modes and un-
derstanding the multimodal transportation system;

⋄ Real-world case studies based on TraDyssey, providing in-
sights into multimodal transportation systems.

2. Related work

This section reviews the prior studies from three aspects,
namely, multimodal traffic analysis, traffic visual analytics, and
mobility visualization.

2.1. Multimodal traffic analysis

Many existing studies have leveraged the multimodal trans-
ortation system for travel route recommendation (Liu et al.,

2021), traffic prediction (Yang et al., 2024; Liang et al., 2022),
accessibility analysis (Tao et al., 2020), and equity (Chan et al.,
2023). Our study aims to support an in-depth and exploratory
evaluation of multimodal urban transportation by comparing dif-
ferent transportation modes. Existing studies closely related to
our study can be divided into two groups based on how and
where the differences in the transportation modes are:

How. This group of studies aimed to establish how the modes
differ in terms of various indicators. Travel Time/Speed stands as
the most intuitive indicator for evaluating transportation modes.
Given its objective nature, previous studies commonly employ a
data-driven approach for comparative analysis (Su et al., 2021;
Gruber and Narayanan, 2019; Akcicek et al., 2024; Jensen et al.,
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2010). For instance, Faghih-Imani et al. (2017) conducted a com-
parison of travel times between driving and cycling in New York
City. Similarly, Akcicek et al. (2024) examined the travel times
f public transit versus driving in Denver. Furthermore, Durán-

Hormazábal and Tirachini (2016) conducted a comparative anal-
sis of travel time variability between driving and public transit.
In addition, satisfaction and emission of transportation modes

also attracted researchers’ interests. Satisfaction is a subjective
indicator for assessing transportation modes. Surveys with ques-
tionnaires are a widely adopted approach to gauge citizens’ satis-
action (Gao et al., 2024; Cao et al., 2016; St-Louis et al., 2014; Tao
et al., 2019). Emission exhausted by vehicles of different modes is
usually investigated via real-world experiments (De Nazelle et al.,
2012; Do et al., 2014). These experiments arrange the vehicles
to travel along specific routes, with subsequent measurements of
pollution emissions.

Where. The second group of studies focuses on analyzing the
spatial distribution of disparities among transportation modes.
Given the inherently spatial characteristics of transportation sys-
tems, a subset of existing research has concentrated on exam-
ining the spatial distribution of different modes across various
indices. To investigate spatial variations, researchers often cal-
culate ratios or gaps between travel times for different modes
across urban areas, which are then visualized using techniques
such as heatmaps (Liao et al., 2020; Cats et al., 2022) or bubble
charts (Lunke et al., 2023) on maps. These studies underscore
he importance of considering spatial context when comparing
ifferent transportation modes. However, current methods do not
upport a nuanced exploration and comparison of multiple modes
n the spatial dimension. For example, which mode offers the
ost convenient travel option for citizens in a region to reach
ther regions remains unanswered.
Some researchers worked on figuring out why travelers choose

different modes (Zhou et al., 2019b; Liu et al., 2015). However,
hey only analyzed which factors (e.g., travel distance and the
umber of parks) affect travelers’ choices rather than analyzing
ultimodal transportation systems. Our study proposes an inter-
ctive visualization system that enables the users to understand
ow, where, and why the transportation modes differ based on
arge-scale multimodal trips.

2.2. Traffic visual analytics

Visual analytics is a powerful means for addressing many
mportant transportation problems (Deng et al., 2023a; Chen
t al., 2015). We followed Deng et al.’s taxonomy on urban visual
nalytics (Deng et al., 2022c) to classify the traffic visual analytics
pproaches into visual traffic planning and diagnosis.
Visual Traffic Planning enables experts to interact with traffic

ata and make informed decisions for optimizing transporta-
ion systems. Traffic information can be utilized to facilitate
he planning of urban facilities (e.g., billboards Liu et al., 2017,
tores Weng et al., 2019, fire stations Chen et al., 2023, and
ouses Weng et al., 2018) rather than traffic facilities. As for
raffic facilities, current approaches for traffic planning mainly
ocus on the bus route (Weng et al., 2021; Di Lorenzo et al., 2016;
Liu et al., 2020). The core idea of these studies is to interactively
re-layout the routes on the map based on the visualized traffic
emands. In addition to the bus routes, Deng et al. (2023b)

studied the tour route planning. Their approach can help tourists
plan their tour routes based on previous tourists’ routes.

Visual Traffic Diagnosis allows experts to make sense of
transportation systems via the visualization of traffic data (Feng
t al., 2021; Zeng et al., 2014). Existing visual analytics approaches
o traffic diagnosis have been extensively studied, covering mul-
iple steps of the diagnostic process. Take the road traffic as an
20
example. With the assistance of visual analytics, experts can mon-
itor road transportation systems (Lee et al., 2020), then detect
abnormal events (Wang et al., 2013; Cao et al., 2018; Dong et al.,
2024), and finally trace their influencing processes over the traffic
networks (Deng et al., 2022b; Pi et al., 2021). Multimodal urban
transportation analysis belongs to the visual traffic diagnosis.
To the best of our knowledge, existing studies only focus on
single-mode traffic data and we are the first to explore the visual
diagnosis approach for multimodal urban transportation.

2.3. Mobility visualization

Our study attempts to visualize massive trips and thereby
valuate multimodal urban transportation. Andrienko et al. (2008)

classified the visualization techniques for mobility data into three
types, namely, direct depiction, summarization, and pattern ex-
raction.

Direct Depiction means that trips are directly depicted as
curves or lines on the map according to the geographic posi-
tions (Zhou et al., 2019a). The methods of this type are the
most intuitive way. However, drawing trips directly with straight
ines will produce serious clutter. In contrast, drawing trips along
the road network (Liu et al., 2017) or bundling them (Wallinger
et al., 2022; Lyu et al., 2020; Zeng et al., 2019) makes individual
trips hard to distinguish. GeoNetverse (Deng et al., 2022a) ad-
dressed this issue by stacking trips on the map and included a
level-of-detail rendering for improved scalability.

Summarization, instead of depicting raw trips, aims at trans-
forming raw trips into visual summaries (Shi et al., 2021; Zeng
et al., 2016; Lu et al., 2016). For example, Scheepens et al.
(2011) presented trajectories using a density heatmap. Wang
et al. (2017) transformed trips into flow maps. Yang et al. (2017)
utilized the matrix representation to organize many-to-many
trips. GeoNetverse (Deng et al., 2022a) can also be considered
as a combination of the summarization and direct depiction
types since it adopted hierarchical clustering to generate hier-
archical summarization and depicted them on the map in an
edge-stacking manner. However, GeoNetverse’s scalability is cur-
rently limited to handling hundreds of trips (Deng et al., 2022a),
a capacity that does not meet our requirements.

Pattern Extraction focuses on the patterns behind trips. Mo-
bility patterns are first extracted from trips with advanced com-
putational models beyond statistic transformation and then are
exposed to users via well-designed interactive visualizations for
exploration and analysis. For example, Chen et al. (2016) ex-
tracted traveling patterns from tourists’ geo-referred social me-
dia. Huang et al. (2016) built upon the road network and ex-
tracted network-based mobility patterns for analyzing the road
network centralities. Wu et al. (2016) studied the co-movement
patterns of crowds. However, these pattern-oriented visualiza-
tions cannot support exploring trips in a large dataset for local-
ized analysis.

We explore these kinds of mobility visualizations and design
a three-level hierarchy of trip exploration.

3. Research problem and solution

This section first introduces the research problem of this study,
hen provides an overview of the proposed solution, and finally
ummarizes the requirements of domain experts.

3.1. Research problem

In the past six months, we have worked closely with three
domain experts (EA, EB, and EC). EA (PhD) is a professor who
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has long been engaged in interdisciplinary research between
computer science and transportation engineering. EB (PhD) is a
esearcher working in transportation engineering at a univer-
ity with a research interest in transportation planning through
dvanced data analysis. EC is a fifth-year Ph.D. candidate in trans-
ortation engineering with an interest in transportation system

evaluation.
A transportation mode refers to the means by which resi-

ents travel within an urban environment. Common modes in-
lude walking, cycling, driving, and public transit. In residents’
aily travel behavior, the choice of transportation mode is of-

ten influenced by its perceived convenience. The convenience
of a mode varies across different OD pairs, depending on static
transportation infrastructure (e.g., road network) and dynami-
cally changing traffic conditions (e.g., congestion levels).

Based on a literature review (Section 2.1) and experts’ ex-
perience, existing multimodal traffic analyses are coarse-grained
and challenging to implement on a city-wide scale. We follow
Sedlmair et al.’s design study methodology (Sedlmair et al., 2012)
and cooperate with the domain experts to characterize the do-
main problem through multiple rounds of expert interviews.
This process includes abstracting the types of data required for
analysis and designing visualizations and interactions to address
the analysis challenges, informed by multiple rounds of expert
feedback.

3.2. Trip-based solution

A trip can faithfully reflect the convenience of a transporta-
tion mode between two locations. If extensive multimodal trip
data are available across the urban space, modes can be com-
pared within their spatial context with fine granularity, facili-
ating the evaluation of multimodal transportation systems. For
xample, domain experts can identify areas well-served by the
ublic transit system by analyzing trips where public transit is

the fastest option. In addition, they can pinpoint problematic
roads (e.g., those that are consistently congested) by filtering trips
where cycling is faster than driving (e.g., between Fig. 1 a⃝ and
c⃝).

We have reframed evaluating multimodal transportation as
he problem of visually analyzing massive multimodal trips. For
his problem, we propose a visual analytics approach named
raDyssey. Massive trip data allow experts to evaluate a multi-
odal transportation system as if they were journeying through
n urban space, akin to the epic journey described in the Odyssey
Homer, 2015). One of the challenges we faced was collecting
 substantial number of trips for fair comparison. To address
his, we leverage modern navigation platforms to collect (or
ynthesize) extensive trip data. Additional challenges arise in
he exploratory comparison of these trips. TraDyssey effectively
oordinates a set of visualizations, enabling experts to query and
ompare multimodal trips from both spatial context and attribute
erspectives.

4. Data acquisition

This section introduces the acquisition of multimodal OD trip
data to compare multiple transportation modes in a study area.

4.1. Dataset requirements

The OD trip dataset should satisfy the following requirements.
First, the OD trips should involve different transportation modes
but fall within the same spatial and temporal ranges. Second,
he OD trips should comprehensively cover the study area. Third,
he spatial granularity of origins and destinations should strike a
21
balance; it should not be too fine to avoid noise, nor too coarse
to obscure spatial variations.

These requirements are challenging to meet with existing
public datasets. To the best of our knowledge, most existing
academic studies, under the constraints of the same spatial and
temporal range, analyze at most two transportation modes and
are limited in spatial scope, making it difficult to achieve city-
wide analysis. To collect such a new dataset, one strategy is to
perform a real-world study by recruiting users to travel within
the study area, like the project GeoLife by Microsoft (Zheng et al.,
2008, 2009). However, the real-world study is time-consuming,
labor-intensive, and costly. In our study, we propose to utilize a
odern navigation platform.

4.2. Estimation-based acquisition strategy

Navigation platforms provide a route recommendation API,
llowing us to retrieve the fastest route for any given OD pair
nd transportation mode in real time.
In navigation platforms, travel times for walking, cycling, and

ail transit (e.g., subways) can be reliably estimated by querying
he corresponding travel distances within the transportation net-
ork, as their speeds are unaffected by road conditions. Through
ollaborations with relevant departments, the platforms have
ccess to subway and bus schedules, enabling accurate estimation
f waiting times. As for the travel time estimation (TTE) for

vehicles on roads, AutoNavi’s TTE algorithm (Dai et al., 2020)
demonstrated a Mean Absolute Percentage Error (MAPE) of ap-
proximately 15% and a Mean Absolute Error (MAE) of less than
40 s per kilometer on the Beijing dataset. Baidu Map, another ma-
jor map service, reported a TTE algorithm (Fang et al., 2020) with
MAPEs around 25% and an MAE of approximately 120 s across
datasets from Taiyuan, Hefei, and Huizhou. Research on travel
time estimation continues to advance, with a recent transformer-
based algorithm (Liu et al., 2022) achieving MAPEs of around 11%
and an MAE of about 160 s on datasets of Chengdu and Beijing.
The high accuracy of these existing algorithms provides a strong
foundation for the reliability of the synthesized trips.

Specifically, we choose AutoNavi, one of China’s most widely
sed navigation platforms, integrated into the AMap service.

Amap boasts over 100 million users and is as important in
hina as Google Maps. Our strategy would not limited to the
avigation platform and can be applied to any study area with

high generalizability.

4.3. Acquisition procedure and data description

The procedure to collect an OD trip dataset is as follows. Given
n area (e.g., the central area of a city) with A km2 and the

expected spatial granularity of g km2 per location, the number
of origins can be estimated: n = A/g . Experts suggest that
a granularity of 0.5 km2 per location is appropriate. Then, we
randomly sample n origins on the map within the area and
sample n destinations on the map for each origin. Given each
OD pair, we utilize the API to query m OD trips, each of which
corresponds to a mode. In this study, m = 4, and we consider
walking, cycling, driving, and public transit modes. The API calls
are executed within a time period (e.g., the evening rush hours)
to ensure consistency in the time range. Finally, we obtain mn2

OD trips for n2 OD pairs.
The data format of an OD pair comprises (1) the origin and

(2) the destination with geographic positions. The data format
of a trip contains (1) the transportation mode, (2) the OD pair it
belongs to, (3) the travel distance, (4) the travel time (in seconds),
and (5) the travel route that can be considered a fine-grained tra-
jectory and can be exactly mapped on the transportation network
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Fig. 2. Prototypes were developed during the iterative design process. (a)
ultimodal trips are plotted on the map directly. (b) Multiple groups of OD
airs are first extracted to guide further exploration and analysis.

(including the road network and public transit network). In par-
icular, a trip with the driving mode can be further divided into
ultiple segments ranging from tens to a hundred meters, each of

which contains (6) road congestion information (e.g., congested,
ormal, and slow). Moreover, a trip using public transit can be a
ombination of walking, bus, and subway because there may be
no bus or subway stations near the origin and destination.

5. Design process and system overview

This section introduces the design process, domain require-
ents, design goals compiled from the requirements, and finally,

the system overview.

5.1. Iterative design

In Sedlmair et al.’s methodology (Sedlmair et al., 2012), the
isual design process is the core stage, which iterates between the
hases of Discover, Design, Implement, and Deploy, and results in

multiple prototypes. Early in this stage, we tried to depict all trips
as paths on the map directly by their routes (Fig. 2A). Each path
f the route was colored according to its mode. As these paths

seriously overlap with each other, it is challenging to start the
exploration.

Afterwards, we propose another prototype shown in Fig. 2B.
OD pairs are grouped based on their fastest mode and displayed
n the left of Fig. 2B. The experts can select one of them to start
he analysis, such as the walking-fastest or public transit-fastest
roup (the last two groups) that has a spatial distribution differ-
nt from the others. To alleviate visual clutter, we further group
D pairs in the spatial dimension by introducing a hexagonal
rid. However, further analysis is still inflexible due to the large
umber of trips and visual clutter. The experts commented ‘‘it
ould be desirable if the grouping can be specified by users.’’
Through back-and-forth interviews with domain experts, the

omain requirements become clear (Section 5.2). To design in-
eractive visualizations that satisfy the requirements, we fur-
her condense design goals (Section 5.3) to guide the visual de-
ign. Eventually, we spent two months designing and developing
he visual analytics system and invited experts to conduct case
studies for validation.

5.2. Requirement analysis

The final requirements are summarized as follows:
R1. How do these modes compare to each other? Experts

need to grasp the overview of the performance of each trans-
portation mode and its difference compared to each of the other
odes. They may first need to understand ‘‘Does driving have
ny significant advantages over public transit?’’ and ‘‘Is it possible

that walking is faster than driving?’’ A basic understanding of
 f

22
the differences among the modes can guide experts to perform
further exploration and then in-depth analyses (R2 and R3).

R2. Where are their differences present? The expert com-
mented that the regions where a mode is inconvenient may
require counter-measurement for improvement. For example, if
driving is more convenient than public transit between two re-
gions, bus lines need to be added between the two regions in line
with the principle of low carbon. Thus, the experts should under-
stand ‘‘where are these regions?’’ and even ‘‘How these regions are
istributed on the map?’’
R3. Why are the differences? Last but not least, the experts

need to determine the reason for these differences. For example,
the poor performance of driving mode can be due to flaws in the
road network: If walking is faster than driving, is it because the
roads are congested? Or is there a connectivity flaw in the road
network that requires drivers to take long detours to get to the
other side of the road? Another example is that the performance
of public transit is affected by the infrastructure of the public
transit system: Is public transit the fastest because the origin and
the destination are next to the subway station?

5.3. Design goals

To fulfill the requirements in the aspects of how, where, and
why, the system needs to support the flexible exploration of
numerous OD pairs and the multimodal trips therein and in-
epth analysis. To better design the system, we further condense

the design goals listed and explained as follows:
G1. Query-First Workflow for Exploration. All requirements

(R1, R2, and R3) emphasize that the analysis is based on OD pair
groups with specific relationships between modes. For example,
there will be valuable insights in the OD pair groups where ‘‘cy-
cling is comparable to driving’’ or ‘‘driving is slower than public
transit’’. The system should provide query functions for users to
flexibly select interesting groups of OD pairs to start analyses.

G2. Multi-dimensional Visualization of OD Pairs. Experts
ust analyze the travel times of various transportation modes,
s it serves as the most intuitive metric for mode comparison
R1). For a given OD pair, multiple trips exist utilizing different
odes. Understanding travel time requires considering distance.
or instance, a scenario where a short distance results in a long
ravel time merits attention. Consequently, the OD pair, along
ith travel distance and multiple travel times, forms a multi-
imensional datum, necessitating multi-dimensional visualiza-
ion techniques (Zhang et al., 2024; Munz-Körner and Weiskopf,
2024).

G3. Difference-aware Visualization of Multiple Modes. The
isualization should effectively capture and present the differ-
nces in travel times across various transportation modes. By
isualizing these differences, users can easily query trips based
n whether a particular mode is faster or slower (R1). Moreover,
his visualization aids in deeper analysis, such as understanding
he extent to which one mode outperforms another for a given
OD pair, thereby supporting the why analysis (R3).

G4. Spatial Presentation of Massive Trips. The trip analysis
is highly dependent on the spatial context. Not only the where
nalysis (R2) but also the how analysis (R1) requires viewing the

spatial distribution of specific groups of trips. Furthermore, the
why analysis (R3) requires inspecting travel routes. Thus, there
must be a geographic map to present trips.

G5. Multi-Level Presentation of Massive Trips. It is over-
helming to draw numerous trips directly on the map. From
he requirements, it can be seen that some of them only require
howing the spatial distribution of trips (R1), while some of them
equire viewing details (e.g., routes) of a subset of trips (R3). A
ulti-level presentation mechanism for trips can be proposed

ollowing such different analysis levels.
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Fig. 3. The interface of TraDyssey. (a) The attribute view adopts a parallel coordinate plot to visualize the travel times and distances of multimodal trips and their
differences. (a1) Cycling is faster than driving if (a2) public transit is faster than driving. (b) The map view is mainly a geographic map that supports the visual
analysis of massive trips from two-level visualizations, namely, (b1 and b2) OD line visualizations and (b3) route visualizations. The map view also allows users to
save snapshots as (b4, b5, and b6) small multiples where users can compare different sets of OD lines in the geographic context.
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G6. Convenient Comparison of Multiple Queries. Users may
query multiple times. For example, they may first query the
D pairs where driving is more convenient and then the OD
airs where public transit is faster. The following question may
e: what are their spatial distribution differences? The visual
esign should support comparing multiple queried results and
ast switching between results.

5.4. System overview

We explore the design spaces of comparative visualization
i.e., juxtaposition, superposition, and explicit encoding) (Gleicher
t al., 2011; Li et al., 2023) and OD visualization (direct depiction,

summarization, and pattern extraction) (Andrienko et al., 2008),
avigate the trade-offs between complex analytical tasks and
he visualization intuitiveness, consequently, design TraDyssey
o assist domain experts in analyzing multimodal transportation
ystems by visually exploring multimodal trips. TraDyssey is a
web-based system implemented with Vue3 plus a TypeScript
framework. It comprises an attribute view and a map view.

The attribute view (Fig. 3a) serves as an overview and visual-
zes OD pairs (G2) by encoding the travel times of multiple modes
and the travel distances in OD pairs with a parallel coordinate
plot (PCP). The travel time differences of multiple modes are also
erived for every OD pair (G3) and encoded in this PCP in a

comparable manner. Users can brush on the PCP to query OD
pairs (G1) for further analyses in the spatial context.

The map view (Fig. 3b) depicts the queried OD pairs and
rips at two levels of visualizations, respectively, within the same
eographic context (G4 and G5). At the first level (Fig. 3b1), the

OD pairs of the trips are aggregated as OD lines and are depicted
based on the hexagonal grid. At the second level (Fig. 3b2), users
an select OD lines of interest on the map, and the trip routes with
different modes are depicted as finer-grained paths following the
ransportation network, supporting a superimposed comparison.
n the map view, users can save snapshots if they are interested
 d

23
in the filtered trips. The snapshots are presented with small
multiples (Fig. 3b3) for a juxtaposed snapshot comparison in the
spatial context (G6).

6. TraDyssey

This section elaborates on TraDyssey’s visual designs.

6.1. Colors

We use a consistent color scheme throughout the system. First,
he OD pair is colored with navy or blue based on whether it is
filtered or not. Second, we also distinguish each transportation
mode by assigning it a unique color because color is the most ef-
fective channel for categorical data. We assign deep blue, orange,
purple, and green to walking, cycling, driving, and public transit
modes, respectively.

6.2. Attribute view

The attribute view visualizes OD pairs, reveals the differences
etween modes in travel times, and enables flexible querying of
D pairs.
Visualizing OD Pairs. For an OD pair, there are m trips for

m transportation modes, respectively. Each trip records the time
a citizen spends traveling between an OD pair using the corre-
sponding mode. Fig. 4a illustrates an OD pair with four travel
times of different modes and the average travel distance. Such a
ive-dimensional datum is visualized with the PCP (the top part of
Fig. 4c). The axis for the travel time of a mode is colored according
to the mode, and the axis for the distance is colored gray. Each OD
pair is represented as a navy polyline passing through the axes.

Revealing Differences in Travel Times. In addition to looking
t travel times in a given mode, users also want to obtain the
ravel time difference between different modes. Although the
ifference is explicitly encoded with the slope channel in the PCP,
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Fig. 4. Parallel coordinate plot (PCP) for OD pairs. (a) The five dimensions (travel
imes and the travel distance) of an illustrative OD pair. (b) The differences
etween modes in travel times are derived from the illustrative OD pair and
re considered the extra dimension of the OD pair. (c) The tailored PCP for
isualizing all dimensions of the OD pair.

the channel is not intuitive. Thus, we propose a tailored data
ransformation and revisit the PCP.

We compute the difference in travel times for any two modes.
Given m modes, we obtain

(m
2

)
differences for each OD pair

Fig. 4b). These differences are considered extra dimensions of
he OD pair and visualized in the same PCP but with revised axes,
as illustrated in the top part of Fig. 4c. Specifically, each revised
axis represents the difference between the travel times of the two
modes, with the mode names placed at the respective ends of the
xis. The polyline of the OD pair intersects the axis according to
he computed difference for the two modes. In Fig. 4, cycling is
faster than walking, so the polyline intersects the walking-cycling
xis closer to the right end of cycling.
Massive OD pairs may lead to an overplotting issue and users

annot clearly obtain the value distribution. To this end, we
overlay a violin-like area chart (Fig. 3a3) to show the distribution
on each axis, inspired by previous methods (Palmas et al., 2014;
Janetzko et al., 2016). Area charts will be filled navy since they
re computed based on the navy polylines for all OD pairs.
Querying OD Pairs. The PCP allows users to filter OD pairs by

rushing on the axes. Filtered OD pairs are then highlighted in
lue. A blue area chart is generated based on these filtered OD
airs and is superimposed on each axis (Fig. 3a3). To accommo-
ate cases with few filtered OD pairs, each axis’s area chart has
ts own scale. The filtered OD pairs will be visualized on the map
iew, enabling users to interpret them within the spatial context.
he modes featured on the brushed axes are designated as target
odes, which are subsequently utilized in the map view.
For instance, to identify OD pairs where driving significantly

outperforms public transit, users can brush near the end of the
‘‘driving-public transit’’ axis closest to the driving mode, as shown
24
in Fig. 6b. Subsequently, these filtered OD pairs (and the trips)
will be displayed on the map view, allowing users to discern the
differences between public transit and driving modes.

6.3. Map view

The map view provides the spatial context for OD pairs and
ultimodal trips. The queried OD pairs are first depicted as
traight lines, and the trip routes are displayed as needed.
Visualizing OD Pairs. We depict each OD pair with a straight

ine connecting the origin and destination on the map. We call
he straight line an OD line. To ease the clutter, we adopt spa-
ial simplification inspired by previous studies (Andrienko and
Andrienko, 2011; Weng et al., 2021). The OD pairs are regularly
collected within the study area and will be evenly distributed
on the map. Hence, we do not apply data-driven approaches for
spatial simplification. Instead, we partition the study area into
a hexagonal grid with uniformly sized grid cells, as shown in
Fig. 6d. Specifically, based on expert recommendations, we set
the diameter of each grid cell (twice the side length) to be 1
km. Subsequently, we offset the endpoints of each OD line to
the center of the nearest hexagonal grid cell. A black circle is
then placed within each cell, with the size indicating the number
of filtered OD lines associated with that cell. Furthermore, to
improve perception, we encode the distance between OD pairs
using transparency. OD lines become more transparent as the
distance between pairs increases, and vice versa.

Users can filter OD pairs on the map by clicking the cell
(e.g., the cell of Fig. 6d1). Only the OD pairs involving the clicked
ell are left (e.g., Fig. 6e).
Visualizing Trips. Users can click individual OD lines to in-

spect the trips that belong to the clicked OD pair (e.g., Fig. 6f). In
addition, users can turn on the ‘‘route’’ switch, and then all trips
(e.g., Fig. 7a) that belong to the OD lines on the map are visualized
(e.g., Fig. 7b).

Recall that a trip describes how people should travel from an
origin to a destination via a specific mode. We visualize each
trip with a path on the map according to the geographic position
of its travel route. The route strictly follows the transportation
network, which maintains the spatial context. The path is col-
ored according to the mode of the trip to distinguish the mode.
Furthermore, given the query-first workflow, we assume that the
modes the user has not brushed in the PCP are not concerned
with his current analysis. Thus, only the trips related to the
target modes will be displayed, preventing users from being over-
whelmed. For the trip of the driving mode, the traffic condition
can be depicted by hovering over the path for inspection. The
road conditions are visualized as a wider path beneath the trip
path, with less opacity, segmented according to traffic status.
We adhere to the conventional color-coding scheme for traffic
conditions: red indicates extreme congestion, orange signifies
slow traffic, and green denotes smooth traffic.

When trips are visualized, a trip table will pop up, showing
he travel times and distance for every OD pair (See supplemental
ideo).
Comparing Spatial Distribution. The map view allows users

to save map snapshots so that they can compare different query
esults with the spatial context. Snapshots are displayed as small
multiples for side-by-side comparison (Fig. 3b4, b5, and b6). To
clearly show the spatial distribution, each snapshot only shows
OD lines instead of routes. The query constraints in the PCP are
also displayed for each snapshot.

7. Evaluation

This section introduces the dataset used for evaluation, the
statistics analysis of the dataset, the case studies conducted by
domain experts, and collected feedback.
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Fig. 5. Statistics analysis of the acquired dataset. (a) A scatterplot for travel time
versus travel distance of each trip, where each dot is colored according to the
mode. (b) The enlarged version of the left-bottom part of the scatterplot of (a).
The lines are linear regression results for different modes, respectively.

7.1. Dataset

Guangzhou, one of the largest cities in China, has a mature
ransportation system with a well-developed road network, a
ell-planned bicycle network, and public transportation services.
he study area was a circular area with a radius of 5 kilometers,
ith Zhujiang New Town as the center, covering the most pros-
erous regions of Guangzhou. The area size was about 78 km2,
nd we sampled 150 origins (150 destinations for each origin)
o approximate the spatial granularity of 0.5 km2 per location.
uring the sampling, we also ensured that the distance between
he origin and destination was greater than 1 kilometer. Initially,
e obtained 150 × 150 OD pairs. An OD pair was invalid if
he origin or destination fell into the river. After filtering out
hem, 18,573 OD pairs were left. The time span was the weekday
vening rush hour from 18:00 PM to 19:00 PM. The operation
f the transportation system at this time is the most represen-
ative and can well reflect the system’s flaws. For each pair, we
alled AutoNavi’s API and queried four trips with walking, cycling,
driving, and public transit, respectively, and eventually obtained
74,292 trips.

7.2. Statistics analysis

Dekoster et al. (2000) drew a line chart with distance on the
-axis and travel time on the y-axis according to the theoretical
peeds of different modes. The result is theoretical. To revise their
result, we performed statistics analysis on our acquired dataset.
In the scatterplot of Fig. 5a, each trip is plotted as a dot according
o the travel time and distance. The dot is colored according to
he mode of the trip. The left-bottom part of Fig. 5a is enlarged
n Fig. 5b. For each mode, we perform linear regression for the
dots of the mode. The regression equation is visualized as a line
with the mode’s color in Fig. 5b. The coefficients of determination
2 are also displayed. We can obtain the following insights:
Reliability. The R2 of walking and cycling are larger than

.9, which means that the travel distance largely determines the
ravel time of walking or cycling. The road network connectivity
ainly causes the residuals. In contrast, the R2 of driving and
ublic transit are smaller than 0.6, mainly due to the uncertain
raffic conditions on roads.

Advantages and disadvantages. Walking is generally the
lowest mode, except for the following situation: if the travel
distance is very small, walking can be faster than public transit
ecause the time of waiting for the subway or bus is long enough
o walk between the origin and destination. Besides, driving and
ycling are generally faster. The benefit of cycling is that it is not
affected by uncertain traffic conditions. As for driving, its benefit
is that vehicles can go very fast. When the travel distance is long
25
enough (to the right of the intersection of the two lines), the
advantages of driving become obvious.

These analyses stay at the macro level. The case studies be-
low, supported by TraDyssey, answer specific questions of How,
Where, and Why in comparing transportation modes.

7.3. Case study

We invited four domain experts (EA, EB, EC, ED) and hosted a
ixed online and offline meeting to conduct a case study based

on this dataset. ED is an expert from a company particularly
nvited by EA. His company focuses on smart transportation ap-
plications and provides solutions to government departments. EA
used the visual analytics system in person, and the screen was
shared with the other experts, EB, EC, and ED. The system was
lso deployed during the meeting so that other experts could use
t on their sides. Before the case study, we introduced in detail
the visual encoding of each visualization in the system and the
interactions supported by the system. Through the case study,
the experts obtained valuable insights and highly appreciated the
system.

Background. Driving and public transit are the two most im-
portant transportation modes in an urban transportation system.
Driving is a comfortable and convenient way. Travelers can sit
quietly in a private space to complete the point-to-point trip.
Besides, driving is theoretically the fastest transportation mode
because its speed can reach hundreds of kilometers per hour.
However, driving is prone to delays due to the traffic conditions
on the road network and is not environmentally friendly in terms
of transportation efficiency (number of people per vehicle). Public
transit is the opposite of driving. It is a low-carbon mode of trans-
portation. However, it is less comfortable because each traveler
has to share the space with other travelers, and it requires trav-
elers to wait for, board, and get off the bus/subway at designated
stops/stations.
How Does Driving Outperform Public Transit?

The area chart in the ‘‘driving-public transit’’ axis showed that
riving is faster than public transit for most OD pairs (Fig. 6a).

The leftmost OD pairs first attracted the experts (Fig. 6b2), where
driving is much faster than public transit, and the superiority can
be more than one hour (4294 s). The experts brushed these OD
pairs. He noticed cycling was also faster than public transit in
these OD pairs (Fig. 6b1). EC commented that ‘‘the public transit
fails to serve these travel demands.’’
Where and Why Driving is the Best?

Experts want to obtain those OD pairs where driving was
he best choice. They further brushed the right on the ‘‘cycling-
driving’’ axis (Fig. 6c1) and obtained the PCP shown in Fig. 6c.
The polylines of these remaining OD pairs mainly intersected the
middle and right parts of the ‘‘distance’’ axis (Fig. 6c2), which
meant that the travel distances were long. The map view (Fig. 6d)
plotted these OD pairs with OD lines. The OD lines were trans-
parent, which also suggested the long travel distances observed
in the attribute view.

Two regions (denoted as Region #1 and Region #2) attracted
he experts’ interest with their larger black circles.

Region #1 (Fig. 6d1). This region included Luhu Park, the
foot of Baiyun Mountain, Guangzhou Chest Hospital, and Cancer
Hospital. After the expert clicked the region, only those lines that
nvolved this region were left on the map (Fig. 6e). The spatial
context of the region and lines becomes clearer. There were no
subway lines (the green lines on the map) and subway stations
near the region #1. Moreover, the directions of these OD lines are
concentrated within a 90-degree range from east to south, almost
perpendicular to the subway lines. Therefore, it was inconvenient
for citizens here to take the subway. The experts picked up two
OD lines for inspection.
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• Line #1-1. The first one was from the region #1 to the
region #e1 (Fig. 6e1) in the south. Since the OD line crossed
multiple subway lines, the experts speculated that public
transit is inconvenient for traveling. The experts clicked the
line #1-1 to view the routes of the trips (Fig. 6f). Although
the driving and public transit routes are of similar length,
public transit users may suffer from problems of transfer-
ring, waiting for buses, and frequent stops for passenger
boarding and alighting, making the journey time-consuming
and uncomfortable. In contrast, driving offers greater flex-
ibility and comfort for point-to-point trips, despite some
congestion on segments of the Inner Ring Road.

• OD Line #1-2. This line was from the region #1 to the region
#e2 (Fig. 6e2) in the south. Sun Yat-sen University is located
here. Fig. 6g shows the routes of the trips. After inspecting
these routes, the expert further explained the superiority
of driving: although the bus route and the driving route
are geographically close, the driving route utilizes the D.H.C.
Elevated, while the bus route cannot, as the bus must shuttle
between blocks to pick up and drop off passengers.

Region #2 (Fig. 6d2). Jinan University is located in this region.
Fig. 6h showed the routes that involved the region #2. No subway
ines (the green lines on the map) and subway stations near the
egion #2, which is similar to the situation of the region #1. The
D lines also exhibited spatial patterns similar to Fig. 6e: the

lines’ directions were almost perpendicular to the subway lines.
One representative line was inspected as follows:

• Line #2-1. This line was from the region #2 to the region
#h1 (Fig. 6h1), where is Guangdong University of Finance &
Economics. The routes that belong to this line were shown in
Fig. 6i. The public transit trip (in light green) predominantly
follows the road network, resulting in a big detour. This
 t

26
highlights the disadvantage of fixed bus routes, leading to
longer distances and longer travel times. If citizens want to
take public transit, they need to walk to the bus stop nearby,
take the bus to the subway station, take on and take off the
subway, and finally walk to the destination, which is time-
consuming and tiring. In contrast, citizens can easily drive
between these two regions through the Huanan Expressway.
The experts also noticed that the cycling route detoured to
LieDe Bridge because ‘‘the Huanan Expressway only allows
motor vehicles to pass’’.

How Does Public Transit Outperform Driving?
The small subset of OD pairs where public transit outperforms

driving also drew the experts’ attention (Fig. 6a). The experts
brushed the rightmost section on the ‘‘driving-public transit’’
axis in the PCP (Fig. 3a2). Considering all OD pairs, in these OD
pairs, public transit is faster, while driving takes longer (Fig. 3a3).
oreover, the advantage of driving over cycling diminishes in

hese cases (Fig. 3a1). The experts speculated that congestion on
the roads between these OD pairs could be the underlying cause.
Where and Why Does Public Transit Outperform Driving?

Fig. 3b1 showed the spatial distribution of the OD lines of
hese OD pairs. The OD lines were semi-transparent and nearly
overed the study area, indicating long travel distances. There
ere three regions (denoted as Region #3, Region #4, and Region
5, respectively) with larger black circles and shooting many OD
ines towards diverse directions. The experts analyzed the three
egions one by one.

Region #3 (Fig. 3b2). Canton Fair, the oldest, largest, and most
epresentative trade fair in China, will be held in this region.
hen participants want to return home or to hotels in the north

fter participating in the Canton Fair, they can conveniently walk
o the subway station nearby to take the subway. In addition,
he origin or destination of these OD pairs falls on the regions
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Fig. 7. Analyzing where and why public transit outperforms driving. (a) The
D lines involving the region #4 and (b) their trips. The Guangzhou and LieDe
ridges are congested during the evening rush hour, and thus, taking public
ransit with Metro Line 3 is better than driving. (c) The OD lines involving the
egion #5 and (d) their trips. The Tianhe CBD is very busy, making passing
hrough there with public transit faster than driving.

near subway lines, making it more convenient for citizens to take
public transit between these regions. In contrast, people who
use driving mode must pass through the LieDe Bridge or Pazhou
Bridge (Fig. 3b3). Unfortunately, the northbound roads of these
two bridges are bound to be congested during evening rush hours,
evidenced by the traffic conditions of LieDe Bridge in Fig. 3b3.

Region #4 (Fig. 7a). Haizhu Lake and Haizhu National Wetland
ark are great places to play and camp near this region. The other
nd regions of these OD lines were located on the up half of the
tudy area. After analyzing the routes of the trips (Fig. 7b), ED
commented that if citizens return home from camping, the LieDe
Bridge and Guangzhou Bridge are almost the must-pass roads.
‘As long as it is the evening rush hour, there will be serious traffic
ams on both bridges’’, commented EA. The traffic conditions of
uangzhou Bridge and LieDe Bridge are evidenced in the ‘red’
raffic condition in Figs. 7b and 3b3, respectively. In contrast,
itizens can avoid traffic congestion with Metro Line 3.
Region #5 has the biggest computer plaza in Guangzhou and

he hospital of Sun Yat-sen University (Fig. 7c). When citizens
ant to return to their homes in the north, they must pass

through the Tianhe CBD (Fig. 7d), one of the most crowded and
ongested areas in Guangzhou. Alternatively, the Metro Line 3
nearby is a better choice.
Which Routes Suitable for Driving, Cycling, and Public Transit,
Respectively?

Figs. 6d and 3b1 were saved as the snapshots of Figs. 3b4
nd 3b5, respectively. The experts were also interested in the OD
airs, where cycling was faster than driving. Thus, he brushed
he left side of the ‘‘cycling-driving’’ axis and saved the obtained
patial distribution of the OD pairs as Fig. 3b6. These snapshots
Fig. 3b4, b5, and b6) displayed the OD lines where driving, public
ransit, and cycling were faster, respectively. (1) For long-distance
27
travel passing through the downtown area (Fig. 3b5), public tran-
sit is more suitable due to road congestion and the extensive
coverage of the subway network. (2) For short-distance travel
within the Tianhe District (Fig. 3b6), cycling is advantageous
because of its quick nature and the frequent road congestion. (3)
In other scenarios, driving is the preferred option (Fig. 3b4).
Case and Insight Summaries.

In this case study, the experts (1) obtained the performance
overview of multiple transportation modes and the difference
overview regarding the travel times and distances, (2) queried
OD pairs that were inconvenient to travel by public transit and
by driving, respectively, and (3) figuring out the reasons by an-
lyzing the trips in the geographical context combined with the

transportation infrastructure. The entire workflow of TraDyssey
was demonstrated, and the experts gained valuable insights into
the multimodal transportation system.

First, the convenience of driving is influenced not only by the
accessibility of the static road network (particularly expressways)
but also by the actual traffic conditions. For instance, on heavily
ongested roads like LieDe Bridge, public transit, and even cycling
can outperform driving. Second, the convenience of public transit
is contingent on the accessibility of the public transportation
etwork, consistent with findings from previous studies (Kamw
t al., 2020; Feng et al., 2021). Third, Guangzhou’s subway system
argely overlaps with congested urban roads, attracting drivers to
witch to public transit, thereby alleviating road congestion. This
ighlights the rationality of the subway line design. Finally, to
urther reduce the number of vehicles on the roads, the public
ransportation system needs to be enhanced. Given that public
ransit is less comfortable than driving, it must offer greater
dvantages in terms of travel time and economic cost to attract
ore citizens. As EB remarked with a laugh, ‘‘Of course, such

mprovements are challenging and require long-term planning.’’

7.4. Expert interview

After the case study, we interviewed each expert individually
to collect feedback. Each interview lasted for around 20 min. Their
feedback is summarized as follows.

Intuitiveness. All experts said that the visualizations are very
ntuitive and can be easily understood with a little explanation.
he parallel coordinate plot is a commonly seen chart, and the
ttribute view is built upon it with minor but effective revisions.
D pairs and trips are plotted on the map with straight lines

and paths, respectively. Such map-based visualization is famil-
iar to domain experts. The OD-trip hierarchy also ensures the
visualization readability.

Effectiveness. All experts praised the effectiveness of
raDyssey. In particular, the attribute view supports the classic
ow analysis of comparing different modes at the city-wide
cale but in a more flexible and intuitive manner. ‘‘I can flexibly
uery trips for further analysis according to my preference’’, EB
ommented. Moreover, the combination of the attribute view and
map view pushes multimodal transportation analysis towards
iner-grained urban spaces. EC appreciated that ‘‘it is useful to
show detailed travel routes on the map, which helps explain the
ode performance on OD pairs.’’
Limitations and Suggestions. The experts raised construc-

ive suggestions. Traffic demands are not incorporated into the
xisting system. While the regions with high travel demands
r potential residential areas are identifiable on the map, the
xperts emphasized the importance of visualizing travel demands
n the map or encoding the demands into OD lines. EC and
D suggested estimating traffic demands through taxi GPS data

previously collected because ‘‘taxi pick-up and -off records can be
regarded as samples of OD demands’’ (Liu et al., 2017; Du et al.,
2021) and ‘‘city-wide traffic demand is stable within several years’’.
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8. Discussion and conclusion

This section discusses the significance of this study, its limita-
tions, and future work, and finally concludes this study.

Significance. This study is significant in the transportation
nalysis from the following perspectives.
Fine spatial granularity analysis. Despite extensive research on

he comparative analysis of different transportation modes, our
roposed visual analytics approach is the first to extend this anal-
sis to fine-grained urban spaces, offering an intuitive interface
or exploratory analysis. This advancement is primarily due to
ur data acquisition strategy, which facilitates the collection of
xtensive multimodal trip data across large urban areas. Addi-
ionally, our implementation of a query-and-explore workflow
allows users to focus on relevant data subsets, preventing them
rom being overwhelmed by the sheer volume of trips.

Trade-off between overview and flexible query. Our query-and-
xplore workflow is slightly different from the common

overview-first workflow. It is effective in scenarios where users
need to identify specific subsets of data with low-level abstrac-
tion or summarization for targeted questions. For example, we
can only summarize massive trips into the attribute view as a
tailored PCP. An overview with a higher-level abstraction would
prevent users from identifying trip subsets of interests based on
the relative magnitudes of travel times across different modes.
Nonetheless, we must clarify that the attribute view also partially
serves as an overview, enabling a basic understanding of different
transportation modes.

Analysis beyond one-to-many reachability. Existing reachability
tudies (Zeng et al., 2014; Kamw et al., 2020; Wu et al., 2017)
typically examine mobility from a single origin to multiple des-
inations. For example, isochrone maps (Vuillemot et al., 2021)
visualize regions that are reachable within specific time con-
straints. In contrast, our study investigates the mobilities from
multiple origins to multiple destinations. Adhering to conven-
tional methods for such many-to-many reachability would de-
mand comparing multiple isochrone contours across maps or
plotting them on one map, both of which are less inefficient. We
address this by breaking down the complex task into a query-
and-explore workflow and proposing a visual analytics approach
to support it.

Analyses that works for any city. The challenge of collecting traf-
fic datasets encompassing multiple modes has previously limited
the scope of many studies. In our work, the scalable data acqui-
ition strategy overcomes these limitations, making it possible to
onduct analyses in new cities. Furthermore, the proposed visual
nalytics approach is not confined to specific city settings, thus
nsuring its applicability across diverse geographical contexts.
Future Work. In addition to addressing the limitations raised

y experts during interviews, we plan to pursue the following
esearch directions:

Accommodating dynamic performance. Our study is currently
onfined to a specific time period, yet transportation systems
exhibit varying performance across different times of day, such as
during morning and evening rush hours. Analyzing and compar-
ing mode performance across these periods presents a complex
challenge that remains unexplored.

Including automated data analysis. We aim to enhance the
xploratory analysis of massive multimodal trip data by integrat-

ing automated pattern mining. For example, we plan to identify
regions with significant traffic congestion or areas where certain
modes demonstrate inefficiency or anomalies. These insights will
then be used to recommend regions as starting points for further
exploratory analysis.

Evaluating travel combining multiple modes. This study mainly
ims to compare different transportation modes. Future work
28
will explore evaluating travel involving combinations of multiple
modes. As multimodal travel becomes increasingly important,
addressing challenges such as data acquisition and visual de-
sign will be critical. Advances in algorithm and platform support
for multimodal recommendations are expected to enable richer
analyses.

Conclusion. We propose a visual analytics approach,
TraDyssey, that assists traffic analysts and planners in evaluat-
ing and comparing the performances of multiple transportation
odes, finally understanding the modern multimodal transporta-

tion system. First, massive trips with different modes are col-
lected via a navigation platform for a collection of OD pairs. Such
a data acquisition strategy can be applied to any city. Second,
we conclude a streamlined query-and-explore workflow based
on domain requirements and iterative prototyping. Following this
workflow, TraDyssey couples a set of user-friendly and effective
interactive visualizations for massive trips, so users can compare
mode performance from the How, Where, and Why perspectives.
The case study performed by experts reveals important domain
implications and demonstrates the effectiveness of TraDyssey.
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