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Multilevel Visual Analysis of Aggregate
Geo-Networks
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Abstract—Numerous patterns found in urban phenomena, such as air pollution and human mobility, can be characterized as many

directed geospatial networks (geo-networks) that represent spreading processes in urban space. These geo-networks can be analyzed

from multiple levels, ranging from the macro-level of summarizing all geo-networks, meso-level of comparing or summarizing parts of

geo-networks, and micro-level of inspecting individual geo-networks. Most of the existing visualizations cannot support multilevel

analysis well. These techniques work by: 1) showing geo-networks separately with multiple maps leads to heavy context switching

costs between different maps; 2) summarizing all geo-networks into a single network can lead to the loss of individual information; 3)

drawing all geo-networks onto one map might suffer from the visual scalability issue in distinguishing individual geo-networks. In this

study, we propose GeoNetverse, a novel visualization technique for analyzing aggregate geo-networks from multiple levels. Inspired by

metro maps, GeoNetverse balances the overview and details of the geo-networks by placing the edges shared between geo-networks

in a stacked manner. To enhance the visual scalability, GeoNetverse incorporates a level-of-detail rendering, a progressive crossing

minimization, and a coloring technique. A set of evaluations was conducted to evaluate GeoNetverse from multiple perspectives.

Index Terms—Geospatial network, multilevel analysis, information visualization, graph drawing

✦

1 INTRODUCTION

MAny urban phenomena can be modeled as geospa-
tial networks (geo-networks), such as air pollution

propagation [13], [35], traffic congestion cascades and prop-
agation [14], [36], human mobility [1], [27], [61], and causal
relations [17]. A geo-network (Fig. 1A) characterizes how an
urban phenomenon or physical objects spread (i.e., edges)
over geographic locations (i.e., nodes), for example, the
propagation of air pollutants over air quality sensors. Visu-
alizing numerous geo-networks extracted from urban phe-
nomena can help urban experts intuitively perform urban
diagnosis in the geospatial context.

We conduct a literature review and identify three levels
of analyzing multiple geo-networks. At the macro level,
experts summarize all geo-networks to learn the overall
picture of the whole dataset [3], [14], [61]. At the meso
level, experts compare or summarize parts of geo-networks
of their interests [13], [41], [63]. At the micro level, experts
inspect individual geo-networks [1], [13], [17]. From here on,
“individual” refers to an individual geo-network. In many
scenarios, experts may need to constantly switch among
multiple levels of analyses. At each level, they may need
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to perform topology-based, attribute-based, and browsing
tasks [34]. Take the analysis of air pollution propagation as
an example. First, experts need to know where propagation
frequently occurs (macro level) and zoom in to learn how it
spreads there (micro level). If a location is found polluted,
experts may want to see all geo-networks that involve
this location and compare them to find the source of the
pollution (meso level).

Existing techniques cannot effectively support such a
multilevel analysis. The existing techniques can be catego-
rized into the following three types. (1) Multiple geo-networks
on multiple maps techniques (Fig. 1B) like small multiples [63]
or lists [13] enable the micro-level analysis but demand fre-
quent context switching for the macro-level summarization.
(2) One geo-network on one map techniques aggregate geo-
networks into one on a map [1], [3], [61] (e.g., Fig. 1C).
Yet, the aggregated geo-network cannot be decomposed for
micro and meso level analyses. (3) Multiple geo-networks on
one map techniques plot all geo-networks on one map in an
edge bundling [29] or stacking way [69]. The bundled edges
make each geo-network hard to be identified. By contrast,
the stacked edges support multilevel analysis because both
the individuals and aggregation are visible. Nonetheless,
shown in Fig. 1D, the edge stacking way is not scalable to
multiple geo-networks that have many edges in common,
i.e., shared edges. Elzen and Wijk [59] combined the second
and third types. Yet, their method can summarize only a
part of geo-networks selected by users via aggregation.

Motivated by the limitations of existing techniques,
we propose GeoNetverse, a new multiple-network-on-one-map
technique for multilevel analysis of multiple geo-networks.
We follow the idea of metro-maps to place the edges shared
between geo-networks in a stacked manner, such that these
geo-networks can be analyzed from multiple levels within
the same and coherent geographic context. Two challenges
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Fig. 1: Multiple geo-networks in (A) can be visualized with three types of visualization, namely, (B) multiple geo-networks
on multiple maps, (C) one geo-network on one map, and (D) multiple geo-networks on one map. (E) A level-of-detail
rendering and crossing minimization are incorporated to address the low legibility in (D). (F) GeoNetverse is proposed
after coloring the geo-networks in (E).

need to be solved to improve the visual scalability:

Numerous shared edges. Metro-lines share much fewer
edges than geo-networks. Due to the limited screen pixels,
the legibility of each stacked edge will considerably suffer
in the visualization of geo-networks (Fig. 1D). To accommo-
date the numerous edges when the map’s zoom level is low,
a level-of-detail rendering technique should be developed
for geo-network visualization, such that the edges can be
merged and summarized gradually as the zoom level is
decreased. Moreover, the line wiring techniques [7] for re-
ducing edge crossings in metro-maps need to be adapted for
geo-network visualization to maintain the edges’ positions
across different zoom levels.

Discrimination of networks. Geo-networks should be
easily distinguished, such that their topologies will not
be confused with each other. Coloring these geo-networks
can ensure the discrimination. However, the coloring of
metro-lines is mostly manually determined [47], [69]. Ex-
isting automatic coloring methods [32] cannot color the geo-
networks with limited distinguishable colors, because their
edges are stacked and cross each other at each level of
detail. Moreover, the coloring between the levels should be
maintained consistently for smooth drill-down analysis.

We propose GeoNetverse to address the above chal-
lenges. For the first challenge, we develop a level-of-detail
rendering technique for geo-networks based on hierarchical
clustering. The clustering of geo-networks generates mul-
tiple hierarchies and the geo-networks will be rendered
adaptively following these hierarchies. We also develop a
two-phase progressive method that arranges geo-networks
following the hierarchies. This method minimizes crossings
between geo-networks while maintaining the positional
consistencies between the levels of detail. Afterward, we ob-
tain the visualization like Fig. 1E. For the second challenge,
we formulate a tailored coloring problem and constraints
such that existing graph coloring methods can be applied.
We first generate a graph that describes the adjacency

relationships and constraints between geo-networks based
on the hierarchies and geo-network arrangement results.
Given this graph, we adopt a two-phase progressive way
that exploits the limited distinguishable colors to color geo-
networks. Finally, we derive our final design GeoNetverse
like Fig. 1F. GeoNetverse is evaluated with quantitative
experiments, three case studies on real-world datasets, and
a task-based within-subject user study.

In summary, our contributions are as follows:
• We develop GeoNetverse that visualizes multiple geo-

networks on one geographic map. It enables exploring
and analyzing aggregate geo-networks on multiple lev-
els within one map without context switching.

• We conduct a set of evaluations to demonstrate our
approaches’ effectiveness and utility comprehensively.

2 RELATED WORK

2.1 Urban Visual Analytics

Urban visual analytics has become an important means
of improving cities [15]. There are generally two types
of applications. On the one hand, visual urban diagnosis
facilitates the identification and understanding of complex
and dynamic urban-related issues, such as air pollution [13],
[71], traffic patterns [57], [63], autonomous driving [26], [31],
public safety [18], [75], energy [39], and reachability [21]. On
the other hand, visual urban planning enables urban experts
to perform reliable and transparent decision-making, such
as location selection [37], [64], [67], traffic planning [65], [66],
[77], travel planning [16], and epidemic control [72].

Many of the existing urban analysis methods character-
ize urban data as geo-networks. For example, human move-
ment data can be aggregated as geo-networks for revealing
human mobility patterns [2], [61]. Air pollution propagation
processes can also be represented as geo-networks [13],
[35]. Similar network-based characterizations can be seen
in the analyses of traffic congestion propagation [36], [63]
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and generalized spatiotemporal cascading [14] and causali-
ties [17]. Given such network representations, analyses can
be performed based on the network structures, such as paths
and roots. In sum, visualizing geo-networks is particularly
important for urban analyses.

2.2 Visualization of Multiple Geo-networks

Network [43], [46] and geo-network visualizations [38], [51]
have been widely studied. We focus on the techniques
for multiple networks rather than one large complex net-
work [11], [78]. Schöttler et al. [51] categorized geo-network
visualizations into geo-mapped, geo-distorted, and geo-
abstracted based on the geography representation. Geo-
mapped methods are the most intuitive. They map geo-
networks onto a geographic map. Geo-distorted and geo-
abstracted methods abstract the geographic context to sat-
isfy other analytical requirements [5], [20], [68], [73]. In sum,
we focus on the most related part, geo-mapped visualization
for multiple geo-networks, and divide them into three types.

Multiple geo-networks on multiple maps. In these
visualizations, each geo-network is drawn on a mini-map,
constituting small multiples [13], [63] that support micro-
level inspection and meso-level side-by-side comparison.
Flexible interactions like filtering, ranking, and pining can
be equipped to enhance usability. However, users may lack a
concise summary of all individuals (macro) and suffer from
severe context switch costs when browsing multiple maps.

One geo-network on one map. These methods aggre-
gate geo-networks by their shared edges or time intervals
into one geo-network and depict it on a map as a macro
summary [1], [3], [10]. The individuals cannot be obtained
by decomposing the aggregation, which limits micro- and
meso-level analyses. For example, the flow map in [10]
aggregates OD flows by their shared edges, where individ-
uals can be estimated since the flows are single-sourced.
However, applying such aggregation to multi-sourced OD
flows [61] hides individuals behind the aggregation.

Multiple geo-networks on one map. Every individual
geo-network is plotted on one map. The edges of geo-
networks are usually bundled or stacked to alleviate occlu-
sion or overlaps between geo-networks. With edge bundling
techniques [23], [29], [49], [79], the overlapping edges will
be bundled, and edges that extend to different nodes are
spread out, generating aesthetic representations [48]. Edge
stacking [9], [33] is commonly used in metro-maps [47],
[69]. Edge-stacked geo-networks are much easier to distin-
guish from each other than edge-bundled ones with the
same interaction, which facilitates micro- and meso-level
analyses. Stacked edges, while alleviating edge overlap,
reveal the aggregated edge’s width to enable the macro level
summarization. However, geo-networks in a general dataset
may have numerous overlapping edges more than metro-
lines. The manual coloring method for metro-lines cannot
be applied to distinguish numerous geo-networks, neither.

In 3D environments, the techniques of this type can
display multiple geo-networks by stacking them along the
z-axis (i.e., the extra dimension compared to 2D space) [3],
[58] or using 3D curves [30], [74]. However, in the former
way, geo-networks stacked far from the ground are difficult
to be visually related back to the geographic context. In

both ways, the visual occlusion and interaction burden in
3D environments are challenging issues [19].

Elzen and Wijk’s method [59] is a hybrid technique of
the second and third types. The shortcomings of each are
compensated for each other. One view presents multiple
geo-networks on one map. Users can select nodes and group
them as one. Another view presents the aggregation of
the geo-networks involved in the grouped nodes. It is a
bottom-up exploratory method with high scalability but
cannot support summarizing all geo-networks to initialize
the analyses from an overview.

Existing techniques cannot well support multilevel anal-
ysis of multiple geo-networks. We consider the edge stack-
ing way to have great potential and extend it with visual
encodings and algorithms to improve its visual scalability.

2.3 Graph Drawing

Unexpected crossings are generated if geo-networks are not
appropriately arranged. We discuss crossing minimization
techniques for metro-map, storyline, and Sankey diagram.

In metro-maps, line wiring algorithms arrange metro-
lines to pass stations with the minimum number of cross-
ings [47], which is denoted as a metro-line crossing mini-
mization (MLCM) problem. In the early years, MLCM and
its variants were solved by introducing tailored assump-
tions due to its NP-hardness [22]. Recently, Bast et al. [7]
developed a state-of-the-art solution based on Integer Linear
Programing (ILP) without any assumptions.

In storylines [54], [55], [56], lines that represent char-
acters move from left to right along a timeline to reveal
the story’s evolution. Two lines are placed adjacently if
the characters interact with each other at that time and
are separated from each other otherwise. Reducing the
crossings of character lines is one of the aims of storyline
layout algorithms. Existing techniques can produce highly
readable storylines after crossing minimization [4], [40].
They generally demand the underlying network of lines to
be topologically sortable [53].

In Sankey diagrams (without loss of generality, the
Sankey diagrams that flow from left to right), the flows
between two horizontal layers may have crossings, which
depend on the vertical positions where the flows start and
terminate. Ordering the nodes may reduce the crossings.
The flows passing layers from left to right constitute a
layered network. Algorithms for layered diagrams can be
applied [45], [60]. Sugiyama’s method [53] is applicable due
to the topologically sortable feature. This problem can also
be solved using Integer Programming (ILP) [76].

In our scenario, the underlying network of general
geo-networks is neither layered nor topologically sortable.
Among the aforementioned methods, only ILP [7], [76] can
be leveraged. Although ILP can well arrange numerous geo-
networks, limited screen space does not allow them to be
drawn directly. We develop a level-of-detail rendering and
an ILP-based two-phase method to reduce crossings while
maintaining geo-networks’ position across levels.
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3 BACKGROUND

3.1 Data Description

We have a set of locations or geo-nodes N = {n1, n2, . . . } with
different geographic positions. Each location n represents
a spatial area in geographic space. We also have a set
of geo-networks G. Each geo-network g = (Ng, Eg) ∈ G

is composed of several locations Ng ⊂ N and edges
Eg = {. . . , eu,v, . . . }. eu,v is a directed or bi-directed edge
between locations nu and nv . Geo-networks may share
edges. For instance, an edge eu,v is shared by two geo-
networks if they both contain the edge eu,v . Geo-networks
have weights; otherwise, their weights are considered as 1.

3.2 Three Levels of Analyzing Multiple Geo-networks

We review the prior studies for visual analysis of gen-
eral networks and geo-networks. Afterward, we summarize
the three levels of geo-networks exploration and analyses:
macro, meso, and micro levels. These three levels corre-
spond to the information-seeking mantra [52]: “overview
first, zoom and filter, then details-on-demand.”

MA. The MAcro level focuses on all geo-networks.
Users learn the overall picture of the whole dataset, for
example, how different regions connect to each other [3],
[14], [61]. Landesberger et al. [61] provided an interesting
example, where a “mono-centric structure” of London was
identified based on the summarized human mobilities. The
overall picture also guides further exploration. In Deng
et al.’s work [17], places where bi-directional edges occur
frequently were selected. Users unfold the geo-networks
that involve these edges for in-depth causal reasoning.

ME. The MEso level focuses on parts of geo-
networks. Users often compare geo-networks when analyz-
ing them [17], [61]. By comparison, users can identify abnor-
mal and interesting ones, such as those with particular wide
edges [14], [41] or uncommon topological structures [13].
Comparative analysis can also be performed for edges or
nodes. For example, the edges of inflow and outflow should
be compared to determine whether a location is a business
or residential area [25]. Summarization can also be applied
to parts of geo-networks, which is common in hierarchical
organization and exploration [13], [14]. Geo-networks with
similar structures on a map can also be further perceptually
summarized [13], [63]. Relationships between geo-networks
(e.g., overlapping and intersecting) can also be discovered.

MI. The MIcro level focuses on individual geo-networks.
Inspecting a geo-network can be seen in many applica-
tions [1], [14], [17], [61], [63]. Available details ensure the
reliability of analysis and provide in-depth insights. For
example, in Deng et al.’s work [13], users can identify and
unfold interesting geo-networks to reason about how air
pollutants propagate and the propagation results.

At each level of analysis, users may also need to perform
general network analysis tasks [34] (e.g., topology-based)
and geographic analysis tasks [50] (e.g., compare).

3.3 Problem Formulation and Approaches

As mentioned in Sec. 1, existing techniques developed for
visualizing multiple geo-networks can be divided into three
types: 1) multiple geo-networks on multiple maps, 2) one

geo-network on one map, and 3) multiple geo-networks on
one map. Existing techniques have limitations in supporting
the aforementioned multiple levels. Hence, this study aims
at filling the gap by developing a new technique.

We investigated how these types can be improved and
whether they can be combined to support multilevel anal-
ysis. We finally derive two approaches. The first is to co-
ordinate the first and second types with user interactions.
The aggregation geo-network (the first type) provides sum-
maries and entries for users to explore individuals (MA).
The displayed individuals (the second type) enable analyz-
ing details of geo-networks (ME and MI). They complement
each other. Although this new method allows the three
levels of analysis to a certain extent, the costs of context
switching between multiple maps still impose a burden on
users. We call it alternative. The second is to improve the
scalability of the third type (i.e., multiple geo-networks on
one map). In particular, we first extend the visual design
of metro-maps and then empower it with a level-of-detail
rendering, two-phase crossing minimization, and tailored
automatic coloring to handle aggregate geo-networks. Fi-
nally, we develop GeoNetverse, a new multiple-network-on-
one-map technique that supports the aforementioned tasks
well without heavy context switching costs.

4 GEONETVERSE

This section introduces the design of GeoNetverse and the
algorithms that enhance its visual scalability.

4.1 Basic Design

GeoNetverse is inspired by metro-map designs [47], [69].
In metro-maps, all metro-lines are drawn on the same
map according to their passing stop locations. GeoNetverse
takes an analogy between metro-lines and individual geo-
networks. GeoNetverse has two layers, background and
foreground. The background aims at revealing overall distri-
bution of all geo-networks by aggregating all geo-networks,
which enables MA. The foreground layer comprises in-
dividual geo-networks. Geo-networks are embedded into
the background in an edge-stacked way like a metro-map,
which supports ME with a superimposing manner and MI.

Background. In the background layer, we depict the
aggregation of all individual geo-networks on the map
according to their geographic positions with a node-link di-
agram. We call the aggregation a background geo-network.
The weight of the background edge is the sum of weights
of the individuals that contain this edge. When determin-
ing whether an individual “contains” an edge, the edge
direction can be ignored in some scenarios. The size of the
background node encodes the sum of weights of individuals
that contain this node. Such a background not only provides
a visual summary of all geo-networks but also leaves space
for embedding individual geo-networks.

Rendering. We attempt to use straight lines for the edges
of the background geo-network. Yet, background edges
may overlap at their common nodes. These overlaps make
the embedded individuals (e.g., the green geo-network in
Fig. 2A) hard to read and follow. Fig. 2C illustrates how this
example can be better rendered. Thus, we make background
edges repelling each other to avoid overlaps.
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Fig. 2: Routing of background edges. (A) A self-crossing is
observed in an embedded geo-network. (B) A node-edge
connection is modeled into an angle range and a radial
direction. (C) The self-crossing is removed after edges being
mutually exclusive. (D) Zigzag curves are undesired.

First, we have to determine whether two edges overlap.
For each node-edge connection, we derive 1) the radial
direction (i.e., the angle at which the edge enters or leaves
the node) and 2) the angle range of the node occupied by
the edge, as shown in Fig. 2B. Two edges overlap if the two
angle ranges overlap. To avoid overlaps, the direction and
then the angle range should be slightly offset. Specifically,
we detect the connections that consecutively overlap on a
node. We then repel their angle ranges with the slightest
offset so that they do not overlap each other (Fig. 2C).
After offsetting the direction, the edges can be rendered
using the Bezier curve. The other end of a revised edge
should also be offset in the opposite direction (Fig. 2C)
to avoid zigzag curves (Fig. 2D). The offset operation is
performed for every node in descending order in terms of
their sizes. Afterward, a solution is obtained if no overlap
is detected. Otherwise, we enlarge all nodes to shrink the
angle ranges of all connections. Repeat the operation above
until a solution is found.

Foreground. In the foreground layer, each geo-network
is represented as a node-link diagram. Individual geo-
networks are stacked by edges like metro-lines on a metro-
map. They have the same weight-width mapping as the
aggregation geo-network in the background layer. Recall
that the background accumulates the weights of individuals
by edges. With the same mapping, the stacked edges of
individuals exactly cover the corresponding edges of the
background. The stacking orders of geo-networks can be
optimized using crossing minimization techniques [7].

Rendering. The edges in the foreground layer follow the
background edges. We place arrows inside edges to indicate
the edge direction (Fig. 3C). If there are two opposite direc-
tions, we encode the respective weights by size and opacity.
Inside a background node, the foreground edges and nodes
of each individual are drawn according to the rules below.
1) If the individual does not pass through the background
node, its node is placed on the periphery of the background
node (Fig. 3A). 2) If it passes the background node with two
edges, the edges are connected with a quadratic (Fig. 3D)
or cubic (Fig. 3E) Bezier curve. The node is placed at the
median of the curve. 3) If there are more than two edges
(Fig. 3B), the node is placed at the intersection of two
edges. The edges are extended to the node straight or using
quadratic Bezier curves.

A
C E

DB

Auxiliary line
Geo-network
Control point

Fig. 3: Routing of foreground edges.

4.2 Enhancement

Individuals and aggregation are encoded together, which
avoids frequent context switching. However, the following
goals should be satisfied to handle multiple geo-networks.

G1: High legibility of geo-networks. It is not advisable to
draw geo-networks on a screen with limited pixels (Fig. 1D).
For example, if 20 individual geo-networks contain the same
edge, embedding them into the background edge with a
width of 40 pixels leads to an average of only 2 pixels
per geo-network. In this situation, users suffer from the
difficulty of reading the too thin geo-networks. Since pixels
are constrained, a feasible solution is to reduce the number
of rendered elements. A level-of-detail strategy is demanded
to control the rendering and ensure the legibility.

G2: Fewer crossings while maintaining edges’ positions
across levels. Crossing minimization algorithms are effec-
tive for arranging the embedded geo-networks. However,
the above level-of-detail strategy poses new constraints for
crossing minimization: the position of a lower-level geo-
network should be maintained at the positions of its upper-
level geo-networks. Such position maintenance underpins
smooth drill-down exploration across levels. Thus, a new
crossing minimization approach should be developed.

G3: Sufficient discrimination between geo-networks. Em-
bedding geo-networks compactly in a limited space im-
poses a requirement on their discrimination. Apart from
the spatial region, the color hue is the most effective in
distinguishing categorical data [44]. Based on the four-color
theorem, the vertices of a planar graph can be colored
by four colors under the constraint that adjacent elements
cannot be colored the same [32]. Since geo-networks can
be crossed by each other, their positional relationships may
not be described by a planar graph. The number of colors
required is likely to exceed the number of distinguishable
colors (6 to 12 [44]). Besides, geo-networks in our scenario
have four relationships with each other: adjacency, inter-
secting, co-edge, and hierarchy. Coloring geo-networks that
have different relationships using similar colors may lead
to different degrees of discrimination. These relationships
should be considered with different priorities. A new au-
tomated coloring method is required to color geo-networks
considering the relationships and limited colors.

GeoNetverse is equipped with automated methods to
satisfy these goals. We first adopt a hierarchical clustering
to enable level-of-detail rendering [62] (Sec. 4.2.1), which
satisfies G1. Based on the hierarchies generated by the
clustering, we develop a two-phase progressive algorithm
that arranges embedded geo-networks to reduce crossings
(Sec. 4.2.2) , which satisfies G2. Finally, given the hierar-
chies and arrangement, we develop a k coloring algorithm
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Fig. 4: Three hierarchies generated by hierarchical cluster-
ing. Blue lines with the same color indicate the rendered
geo-networks given target levels lt. Red line indicates the
rendering with local drill-down. The geo-networks of roots
(l = 0) are arranged using ILP and others (l > 0) are arranged
after a pair-wise optimization during a top-down traversal.

that makes rendered geo-networks distinguishable with k

available colors (Sec. 4.2.3), which satisfies G3. These three
algorithms are executed before the interactive visual anal-
ysis of geo-networks. Hence, their running does not affect
real-time user interaction. Please refer to the appendices for
their pseudocode and time complexity analysis.

4.2.1 Level-of-detail Rendering

The goal of level-of-detail rendering is to obtain the proper
number of foreground edges on each background edge (G1).
We adopt a bottom-up strategy to perform the hierarchical
clustering that generates multiple levels of geo-networks.

Similarity measure. Inspired by AirVis [13], we intro-
duce a structure-aware similarity measure for geo-networks.

d(g1, g2) = 1−
Eg1 ∩ Eg2

Eg1 ∪ Eg2

. (1)

To enable hierarchical clustering, we extent the equation (1)
and derive final similarity measure D(∗, ∗) as follows:

D(g1, g2) =

∑
ga∈L(g1)

∑
gb∈L(g2)

d(ga, gb)

|L(g1)| × |L(g2)|
. (2)

L(g) denotes the leaf (original) geo-networks under g in the
clustering hierarchies. L(g) = {g} if g is a leaf.

Clustering process. The traditional hierarchical cluster-
ing is an iterative procedure that iteratively picks the two
most similar geo-networks and merges (aggregates) them as
a new geo-network. The new one will replace the original
two and participate in the following clustering iterations.
In our problem, we aim to reduce the number of geo-
networks drawn in an edge by summarizing them. So, we
make the following adaptation. In each iteration, we extract
a set of candidate geo-networks that passes the background
edges where more than m edges have been embedded.
The clustering procedure only picks from these candidates.
The iteration stops if 1) all similarity measures D(∗, ∗) are
lower than a pre-defined threshold λ or 2) there is no
candidate. In our study, m = 5 and λ = 0.25 after multiple
attempts. These parameters can be easily tuned based on the
appearance of the rendering result.

Rendering. The clustering generates multiple hierar-
chies: for example, three hierarchies in Fig. 4. Each node
in a hierarchy represents a geo-network which can be an

l=0

l=1

l=...
.
.
.

Integer Linear Programing Pair-wise optimization

.
.
.

.
.
.
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g2 g3 g5

g6

g4A B1

B2 C

g6
g6

g2 g3 g2 g3

g4g4 g1 g1

g5 g5

Fig. 5: (A) to (B1): The geo-networks with l = 0 (g1 and
g4) are arranged and have fewest crossings after ILP-based
optimization. (B2) to (C): The geo-networks with l > 0 are
arranged by pair-wise optimization (g2-g3 and g5-g6) and
maintained in their parent’s positions.

original individual geo-network (leaf) or a merged geo-
network (non-leaf). The hierarchies enable a level-of-detail
rendering. The root nodes of hierarchies have levels l = 0.
Others can be assigned accordingly in a top-down traversal.

We implement two interactions for controlling the ren-
dering. First, users can specify the target level lt with a
slider to globally determine which geo-networks should be
rendered. If a merged or original geo-network has a level
l = lt or has a level l < lt but has no children, it will be
retrieved and rendered. The blue lines in Fig. 4 illustrate
the retrieving results with lt = 0, 1, 2, and 3, respectively.
Second, users can perform local drill-down to see details of
interests and local summarization. They can click a node of
an embedded geo-network to trigger a UI widget with two
buttons. On the one hand, they can choose to split the geo-
network into two if it is not a leaf. The red line in Fig. 4
illustrates the local drill-down. On the other hand, users can
choose to merge the geo-network with its sibling.

Position constraint. Such a rendering strategy enforces
constraints of geo-networks’ positions across levels. Take
Fig. 5A as an example. g1 with level l = 0 has children
g2 and g3 with levels l = 1. Thus, g2 and g3 should take
the place g1 takes to ensure visual consistency during drill-
down exploration. In this way, g2 and g3 are seen as the
results of splitting g1. g1 is seen as the combination of g2 and
g3. Crossing minimization should consider the constraints
by maintaining edge positions across levels of detail.

4.2.2 Progressive Crossing Minimization

As per the requirement of G2, foreground geo-networks
should be appropriately arranged to reduce crossings. Re-
searchers have developed effective algorithms for crossing
minimization [7], [76]. However, these algorithms cannot
be directly applied due to the aforementioned position
constraints. We develop a two-phase progressive algorithm
for reducing crossings based on the clustering hierarchies.

Phase I: Arrange root geo-networks. We first apply the
integer linear programming (ILP) proposed in the prior
studies [7], [76] to the root geo-networks retrieved by lt = 0.
The optimal arrangement for these geo-networks can be
achieved. This phase is illustrated in Fig. 5A and Fig. 5B1.
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Here, we illustrate the core idea of the prior methods [7],
[76]. There are two types of avoidable crossings, as illus-
trated in Fig. 6 without loss of generality. For the first type
(Figs. 6A1 and A2), g1 and g2 that pass through the node
n share two edges e1 and e2. A variable x1,2,e ∈ {0, 1}
indicates whether the stacking order of g1 is larger than
g2 on e (1 for true and 0 for false). A decision variable
cn,g1(e1,e2),g2(e1,e2) indicates whether g1 and g2 have a cross-
ing at the node n. Two constraints are considered:

cn,g1(e1,e2),g2(e1,e2) + x2,1,e1 + x2,1,e2 ≥ 1, (3)

cn,g1(e1,e2),g2(e1,e2) + x1,2,e1 + x1,2,e2 ≥ 1. (4)

In Fig. 6A1, x2,1,e1 and x2,1,e2 are 0. In Fig. 6A2, x1,2,e1

and x1,2,e2 are 0. The decision variable c is enforced to be 1
by the inequalities (3) and (4), respectively. For the second
type (Figs. 6B1 and B2), g1 and g2 share only one edge. Two
constraints are included:

cn,g1(e1,e3),g2(e1,e2) + x2,1,e1 + t(e2, e3|e1) ≥ 1, (5)

cn,g1(e1,e3),g2(e1,e2) + x1,2,e1 + t(e3, e2|e1) ≥ 1. (6)

t(ei, ej |ek) ∈ {0, 1} indicate whether the stacking order of ei
is larger than that of ej starting from ek in the clockwise di-
rection. In Fig. 6B1, x2,1,e1 and t(e2, e3|e1) are 0. In Fig. 6B2,
x1,2,e1 and t(e3, e2|e1) are 0. Thus, the decision variable c is
enforced to be 1 by the inequalities (5) and (6), respectively.

The goal is to minimize the objective
∑

c∈C
cAc. C

denotes the decision variables of all avoidable crossings. Ac

denotes the overlapping area of a crossing c ∈ C. Ac is
estimated by the product of the weights of the edges that
generate this crossing, e.g., 13 × 21 in Fig. 6A1. Minimizing
the objective aims to make some decision variables c to be 0
(i.e., to avoid crossings) by determining xi,j,e. Once xi,j,e

is determined, the stacking orders of gi and gj on e are
obtained. Please refer to the studies [7], [76] for details.

Phase II: Arrange descendant geo-networks. After root geo-
networks has been well arranged, we recursively traverse
and arrange the descendants of each of them. This phase is
illustrated in Fig. 5B2 and Fig. 5C.

Once a geo-network is arranged, we arrange its two
child geo-networks and only consider the crossings between
them. Whether they intersect with others has been deter-
mined by the arrangement of their parent. Thus, all descen-
dants can be arranged via such a pair-wise optimization
during a recursive traversal. Take Fig. 5 as an example. g2
and g3 are sibling geo-networks and have the same parent
g1. Once g1 is arranged, we only need to arrange g2 and
g3. After g2 or g3 is done, we then arrange its children. The
arrangement with minimal crossings is obtained when the
traversal completes.

To arrange two sibling geo-networks, e.g., g2 and g3, we
enumerate all 2|Eg2

∩Eg3
| candidate arrangement solutions,

where the exponent is the number of edges the two geo-
networks have. For each candidate, we accumulate the
overlapping area over the nodes they involve as the cost.
The optimal arrangement has the minimum cost. It is fast
enough when |Eg2 ∩ Eg3 | is small. Otherwise, the ILP can
be applied again.

4.2.3 k Coloring

To satisfy G3, we develop a k coloring algorithm for coloring
geo-networks with k colors based on traditional graph col-
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Fig. 6: (A and B) Two types of avoidable crossings.

oring methods. We first formulate the coloring constraints
tailored to our scenario and then apply a two-phase pro-
gressive coloring strategy.

Coloring constraints. For each lt = 0, 1, . . ., we generate
a positional graph G

p
lt

that describes coloring constraints. In
such graphs, each vertex denotes a retrieved geo-network
and each edge denotes the positional relationships be-
tween geo-networks. We define three relationships for geo-
networks to adapt our scenario. The first one is adjacency if
they have at least one edge placed adjacently in any back-
ground edge. The second one is intersecting if they produce
at least one crossing. The third one is co-edge if they shared
the same background edge. Gp can be generated based on
the arrangement result. So far, we have a basic constraint
(1): Geo-networks with any positional relationships cannot
have the same color.

Given each {Gp
lt
|lt ∈ 0, 1, . . .}, backtracking methods [8]

can label every geo-network starting from 0 under the
constraint (1). Each label corresponds to a color. However,
positional graphs for numerous geo-networks can be dense
and the maximal label exceeds the number of distinguish-
able colors k. Thus, we have to exploit k colors by reusing
them. For the v-th color, v < k, we sample around it in
the LAB color space to obtain slightly different colors. These
colors correspond to labels v+k×n, n = 1, 2, . . . . That is, the
labels with the same remainder to k correspond to similar
colors. In this way, we have to consider two constraints:
(2) Adjacent geo-networks and (3) intersecting geo-networks
cannot be assigned similar colors. Finally, since users may
split a geo-network for local drill-down, we consider the
forth constraint: (4) A color that cannot be assigned to a
geo-network cannot be assigned to its descendants. The
priorities of constraints (1) to (4) are getting lower.

Coloring. We develop a two-phase progressive method
that considers the four constraints and ensures the color
coherence across levels.

Phase I: Color root geo-networks. We first color the root geo-
networks retrieved by lt = 0. Initially, to make full use of
k colors, the top-k wide geo-networks are assigned labels 0,
1, . . . , k - 1. The others are assigned label 0. Afterward, we
adopt the well-established backtracking method [8]. Briefly,
after geo-networks g1, . . . , gcur are labelled, we label gcur+1

from 0 to Global Cur Max + k + 1 and test the safety.
Global Cur Max is the global current maximal label. La-
belling a geo-network with v is safe if the four constraints
are satisfied. If a safe label for gcur+1 cannot be obtained,
then backtrack to increase the label of gcur .

Phase II: Color descendant geo-networks. We traverse the
descendant geo-networks level by level in a top-to-bottom
manner. For each level, the wider of the sibling geo-
networks inherits the label of its parent during the traversal
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TABLE 1: Dataset description. #geo-nodes: number of geo-
nodes. #g: number of geo-networks.

Name #geo-nodes #g Desc.
AirVis 39 districts 317 Air pollutant propagation patterns
AirCas 5 districts 15 Air pollution events’ cascades
JamCas 5 roads 12 Traffic jam events’ cascades
HuMo1 23 locations 52 Origin-Destination flows of citizens
HuMo2 23 locations 56 Origin-Destination flows of citizens

to ensure the coloring consistency. Taking Fig. 5 as an
example, g5 inherits g4’s label. Afterward, more than half of
the geo-networks at the level have labels. Finally, we adopt
a greedy method [42] to label the remainders at the level
with the minimum safe label.

If positional graphs are too dense, solutions in both
phases cannot be obtained under all constraints. If so, we
gradually remove the lowest priority constraints to obtain
solutions. In the rest of this paper, we use 8 colors (See Fig. 8)
from the Tableau-10 color scheme for categorical fields.

4.2.4 User Interactions

In addition to the user interactions for steering the level-
of-detail rendering, we also implement an interaction for
pining and highlighting the geo-networks of users’ interests.
We add a switch to GeoNetverse. When the switch is turned
on, all rendered geo-networks fade to an opacity of 0.5.
Users can click geo-networks and the opacity of the clicked
geo-networks reverts to 1. After the switch is turned off,
those unclicked geo-networks fade to an opacity of 0.2,
highlighting those clicked ones.

5 EVALUATION

We evaluate our approaches with quantitative experiments,
case studies, and a within-subject user study.

5.1 Dataset Description

AirVis dataset is from Deng et al.’s work [13]. It comprises
many propagation patterns of air pollutants in Beijing-
Tianjin-Hebei (BTH) region. Each pattern is a directed and
weighted geo-network, over which air pollutants frequently
propagated. The weight is the occurring frequency. We
ignore directions in the hierarchical clustering because these
geo-networks inherently have many bi-directional edges.

AirCas dataset is from Deng et al.’s work [14]. Each geo-
network reflects how air pollution events cascaded over
districts around Hangzhou. The weight also indicates the
occurrence frequency.

JamCas dataset is also from Deng et al.’s work [14] and is
similar to AirCas dataset. Each geo-network here describes
the cascades of traffic jam events in Hangzhou.

HuMo1 and HuMo2 (human mobility) datasets are syn-
thetic datasets we generate based on the rules in the urban
planning and transportation fields. Studying OD (Origin-
Destination) flows of citizens is a popular topic. OD flows
are widely characterized as geo-networks [61]. We do not
have such datasets available and hence decide to generate
datasets. We hope the synthetic geo-networks can describe
the human mobilities during morning rush hour [25]: resi-
dential areas like “volcanoes” send out citizens, while CBDs

(central business districts) like “black holes” attract citizens
for work. The data generation has three steps:

1) We manually select locations on the map of a city. They
are overall evenly distributed in the city. We set four
centered locations as CBDs Nc and those peripheral
locations as residential areas Nr . Each nc ∈ Nc is origin
(i.e., O) and each nr ∈ Nr is destination (i.e., D).

2) We follow Huff [28] to compute the OD volume be-
tween each pair (nr, nc). Particularly, we estimate the
willingness score of citizens at nr to work at nc as the
geographic distance between nr and nc divided by nc’s
attraction. Afterward, for each nr , we normalize the
willingness scores of working at nc and then compute
the OD volume as the normalized score multiplied by
the citizen number of nr . For diversity, in our setup,
two CBDs are twice as attractive as the other two; one
residential area has about 600 citizens, three about 300,
and others about 100.

3) For each pair (nr, nc), the shortest path from nr to nc

constitutes a geo-network and the volume from nr to
nc is the weight the geo-network.

We perform the above three steps on two cities respectively
and obtain the two synthetic datasets.

The datasets are summarized in Table 1. We use them for
five reasons. First, they describe typical urban phenomena in
popular urban domains. Second, the real-world datasets en-
able case studies that can demonstrate GeoNetverse’s prac-
ticality. Third, compared with the real-world datasets, the
synthetic dataset has a moderate scale with 50 geo-networks
and 23 geo-nodes. As a result, the five datasets ranging
in scale from small to large are suitable for evaluating the
scalability. Fourth, it is necessary to evaluate GeoNetverse
on the datasets with differently distributed geo-networks.
In AirVis dataset, multiple geo-networks have background
edges in common. There are 9 edges with more than 20 geo-
networks. On average, there are 8.17 geo-networks per edge.
In the synthetic datasets, multiple geo-networks end at
“black holes,” constituting high-degree geo-nodes. Finally,
the two synthetic datasets that differ only in the geo-node
distribution and geographic context enable a fair within-
subject user study (See Sec. 5.4).

5.2 Quantitative Experiment

We conduct experiments to evaluate the runtime and mem-
ory consumption of our method and the performance of
crossing minimization and coloring algorithms. The ex-
periments were performed on a desktop running Ubuntu
20.04 with Intel Core i7 3.70GHz CPU, and 16 GB RAM.
The crossing minimization is implemented with Python 3.8
and ILP problems are solved by the PuLP solver (https:
//coin-or.github.io/pulp/). The hierarchical clustering and
k coloring are implemented with TypeScript.

Runtime. We record the runtimes (average of 10 times)
of our three algorithms and summarize them in Table 2. The
whole pipeline needs less than 2s for the four datasets with
a smaller number of geo-networks and takes about 25s for
AirVis dataset. The most time-consuming step is to construct
an ILP model with a matrix where the number of rows
is the number of constraints and the number of columns
is the number of variables. Although some algorithms are

https://coin-or.github.io/pulp/
https://coin-or.github.io/pulp/
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TABLE 2: Algorithm runtimes (ms). The runtimes after the
plus sign are for constructing ILP models.

Algorithm HuMo2 AirCas JamCas AirVis
hierarchical clustering 49 12 8 8300
crossing minimization 60+1300 11+225 50+8 50+17100
k coloring 19 11 10 140

estimated to have high time complexity (See appendices),
they can be completed quickly.

Memory consumption. The runtimes of constructing an
ILP model raise concerns about whether it causes too much
memory consumption. After inspection, we find that the
ILP model for AirVis dataset includes 2,056 constraints and
863 variables and consumes 116.64 MB of memory. ILP
is a memory-intensive method, and it is not advisable to
directly apply it to too many geo-networks. For example,
233 geo-networks covering 39 locations are retrieved for
AirVis dataset when lt = 4. Directly formulating the arrange-
ment problem of these geo-networks as ILP constitutes 83k
constraints and 7k variables. Generating a matrix of 83k ×
7k and feeding it into an ILP solver exceed the memory
limit. Such memory consumption increases sharply as lt
increases. For AirVis dataset, we were not able to directly
use ILP to arrange the geo-networks when lt ≥ 4.

Our method is more computationally scalable than ILP-
based methods alone regarding the runtime and memory
consumption. GeoNetverse adopts the hierarchical cluster-
ing. It only needs to process fewer geo-networks generated
by clustering rather than all original ones.

Crossing minimization. The level-of-detail rendering
increases the legibility of geo-networks and avoids users
being overwhelmed by geo-networks. Our crossing min-
imization algorithm follows this rendering mechanism to
reduce crossings while maintaining edges’ position across
levels. Thus, some avoidable crossings inevitably remain.
Applying ILP [7] directly to each level of geo-networks can
produce the least crossings. But in this way, edges’ position
across levels cannot be maintained. We expect our method
far outperforms a random arrangement (i.e., a baseline) and
is not much worse than applying ILP directly.

For each target level for each dataset, we obtain the num-
ber of crossings under three different arrangement methods
and show the results in Fig. 7. The results of our two-phase
progressive arrangement are indicated by red circles. The
results of directly applying ILP for each target level are in-
dicated by blue crosses. As for the random arrangement, we
obtain 10 random results and represent them with boxplots.
As mentioned before, we were not able to arrange the geo-
networks when lt ≥ 4 in AirVis dataset using ILP directly.

Our method is far better than random arrangement. It
is slightly worse than applying ILP directly because we
consider the constraints of position maintenance enforced
by the level-of-detail rendering. As the target level increases,
the gap between our method and ILP increases because our
method has to consider more constraints for deeper geo-
networks. In AirCas and JamCas datasets, the background
geo-networks are simple, and every individual is sparse,
shown in Figs. 10 and 11. On these datasets, our method
is able to achieve the same results as ILP.

Coloring. The performance of k coloring algorithm is
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Fig. 7: Quantitative performance on reducing crossings. Our
method needs to maintain edges’ position across levels
and thus is slightly inferior to using ILP directly, but far
outperforms random arrangement. #g denotes the number
of geo-networks with respect to lt.

A B

Fig. 8: Left: Color usage of all geo-networks in hierarchies.
Right: The violation of Constraint (3).

evaluated from two aspects. First, for each dataset, we count
k colors assigned to all geo-networks in the hierarchies. Sim-
ilar colors are considered the same in the counting. Fig. 8A
shows the statistics. Overall, these k colors are fully and
evenly utilized and no color is over-reused. Our algorithm
eliminates confusion by reducing similar on-screen colors.

Second, we measure the discriminability of geo-
networks by reporting how their colors violate the con-
straints. How constraint (4) is violated depends on the
user interaction of drilling down. Therefore, this experiment
only considers constraints (1), (2), and (3). In particular,
for each dataset, we generate a set of positional graphs
{Gp

lt
|lt = 0, 1, . . . }. For each G

p
l , we enumerate all edges

and test whether the colors of two geo-networks connected
by an edge violate the constraints. We consider two geo-
networks confused if their colors violate any constraint.

Confused geo-networks are only detected in the AirVis
dataset. In other datasets, geo-networks would not con-
fuse users. AirVis dataset comprises more geo-networks
than others, so the coloring algorithm inevitably violates
constraints. Table 3 shows the number of confused geo-
networks in AirVis dataset by target levels. Only the lowest
priority constraint (3) is violated and the violations are
detected when lt ≥ 3. There are more than 200 geo-networks
and more than 4 geo-networks per edge. In these violations,
intersecting networks have similar colors. Nonetheless, we
think users can distinguish them because the intersection
has a discontinuous shape (e.g., Fig. 8B).
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TABLE 3: Number of confused geo-networks in AirVis
dataset by target levels and violated constraints. #g: number
of geo-networks regarding lt. #G: number of geo-networks
per background edge on average. Cx: Constraint (x).

lt 0 1 2 3 4 5 6 7 8 9 10 11 ...
#g 118 148 182 209 233 250 265 282 295 303 306 309 ...
#G 2.5 3.2 3.9 4.7 5.3 5.8 6.3 6.9 7.3 7.6 7.7 7.8 ...
C3 0 0 0 4 13 22 32 49 65 73 76 80 ...
C2 0
C1 0
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Fig. 9: Case study on AirVis dataset. (A) Air pollutants fre-
quently propagated within three regions. (B) Air pollutants
frequently propagated back and forth within the region
(A1). (C) Air pollutants propagated back and forth between
two cities in the region (A2). (D) The air pollutants of the
three districts in the region (A3) were from the northeast.

5.3 Case Studies

Three real-world cases demonstrate how multilevel analyses
are performed in a coherent spatial context, even for more
than one hundred geo-networks.

5.3.1 Propagation Patterns of Air Pollution in BTH Region

We explore 317 geo-networks in AirVis dataset. Each geo-
network denotes a propagation pattern of air pollution.
This case shows that starting from the macro level and
drilling down can gain insights that were unavailable with
a previous bottom-up approach [13].

Macro-level. After the dataset is loaded, overall patterns
can be obtained (Fig. 9A). Thick edges can be observed in the
three regions, namely, Shijiazhuang region (Fig. 9A1), Bei-
jing (Fig. 9A2), and Tianjin (Fig. 9A3). These regions cover
the three largest cities in the dataset. The edges between
them are relatively thin. These observations suggest that air

pollutants spread mainly within cities, and less often across
cities. Such macro-level findings motivate us to drill down
into these three cities, respectively. The macro-level analysis
enabled by the summary of all geo-networks 1) avoids users
being overwhelmed by too many geo-networks, 2) reveals
an overall pattern that air pollutants spread mainly within
three major cities respectively, and 3) guides users to the
next step of exploration and analysis. Localized analysis can
be performed easily by zooming in on the regions of interest
because all geo-networks are visualized on the same map.
In this way, users retain the context of macro analysis for
meso-level analysis.

Meso-level. We first zoom in on Shijiazhuang region
(Fig. 9A1). A purple geo-network connects most districts of
this region using its thick edges. Moreover, these edges each
have two opposite and similarly bright and sized arrows.
It seems that air pollutants frequently were transported
back and forth within the districts nearby Shijiazhuang.
For further confirmation, we drill down the purple geo-
network. We interactively split it four times and obtain the
result in Fig. 9B. Each finer-grained geo-network is placed
under its parent while other geo-networks’ positions remain
unchanged. Thereby, no sudden visual changes interrupt
the analysis flow. These finer-grained geo-networks are
embedded in the same background layer that can be used
as a reference. We can easily compare them to learn the
structural difference between them and the regions they
involve in common. Particularly, we notice the same set of
districts are still connected by the bi-directional edges of
these geo-networks. To conclude, these districts oftentimes
share the same fate of air pollution. It is worth mention-
ing that the edge staking way makes geo-networks less
occluded by each other. Besides, since geo-networks are
colored differently, users can distinguish each one.

Meso-level. We then zoom in on Beijing (Fig. 9C). The
propagation patterns in Beijing are mainly clustered into
cyan, green and red geo-networks. Particularly, the green
and red geo-networks connect two districts of Beijing and
one district in another city via thick and bi-directed edges.
In other words, better pollution control needs to consider
close cooperation between the two cities. Geo-networks are
still presented in aggregation forms but in more detail. Users
do not need to stare at many arrows to obtain the edge
directions. Moreover, these three geo-networks generate few
avoidable crossings. Their edges are easy to track.

Meso-level. Finally, we zoom in on Tianjin (Fig. 9D).
There are two main geo-networks, the blue one and orange
one. The blue geo-network connect the three districts in
Tianjin with bi-directed edges. This indicates that the air
pollutants were also transported back and forth like that
in Shijiazhuang region. The orange geo-network reveals an
interesting phenomenon by the one-way arrows in Figs. 9D1
and D2: all three districts suffered from the air pollutants
propagated from the northeast and but pollutants there
were rarely transported to the northeast. We split the orange
geo-network to see details. It is split into a pink one and
an orange one. The orange one inherits its parent’s color.
The pink one can be easily distinguished from the adjacent
orange and purple ones. Surprisingly, the two geo-networks
each dominate one of the edges, respectively (Fig. 9D3 and
D4), rather than occupying them equally. That is to say, air
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Fig. 10: Case study on AirCas dataset. (A) All geo-networks
originate from the central district. (B) An enlarged view
of the central district shows that many cascading patterns
have 3 or more edges. Air pollutants can simultaneously
propagate to the other four districts from the center. (C)
Individuals of interest are accessed after drilling down.

pollutants were less often transported from multiple paths
at the same time. Further analysis requires the involvement
of geography and meteorology experts.

5.3.2 Cascades of Air Pollution Events around Hangzhou

In the second case, we analyze AirCas dataset. Each geo-
network summarizes a kind of cascading process of air pol-
lution events. Deng et al. [14] analyzed these geo-networks
in a geo-abstracted manner. By contrast, GeoNetverse en-
ables analyzing them within a geographic context.

Macro-level. We load the dataset and obtain the results
(Fig. 10A). All geo-networks start from the central node.
Fig. 10B is the enlarged view of the central node of Fig. 10A.
Some geo-networks (e.g., the blue, green, and purple ones)
contain multiple edges. The same conclusion in [14] can be
drawn: “the central location’s pollution usually influenced many
other locations but not always all of the locations were.”

Micro-level. If a geo-network has three or four edges,
it represents the cascades leading to the districts around
Hangzhou. Such a geo-network deserves further analysis
because the event cascades behind it expanded the influ-
ences of air pollution in the central district to around,
resulting in severe air conditions throughout the Hangzhou
region. To find such geo-networks in detail, we drill down
globally by increasing lt. At the most detailed level, five
geo-networks are identified and highlighted in Fig. 10C.
Afterward, some domain-specific views can be used to
analyze them. For example, a timeline can help learn when
these cascades occurred.

5.3.3 Cascades of Traffic Jam Events in Hangzhou

In this case, we analyze JamCas dataset. Each geo-network
summarizes a kind of cascading process of traffic jam events.

Macro-level. We can easily identify the same patterns
in the prior work [14]. First, among these geo-networks
(Fig. 11A), the purple, yellow, orange, and cyan ones have
higher weights and have only one edge. Thus, the cascading
processes along the four edges rarely co-occurred. It is
because they are caused by different traffic demands [14].
Second, the purple geo-network has far more weight than
the others and is worthy of being further investigated.

A B

Fig. 11: Case study on JamCas dataset. (A) The purple,
yellow, orange, and cyan geo-networks have only one edge
and a large weight. (B) An unexpected cascading pattern is
identified based on the spatial context.

Micro-level. Besides, we also identify an unexpected
geo-network that is colored red and highlighted in Fig. 11B.
This geo-network means that traffic congestion events first
cascade to the top-left location and then the location be-
low. Such a tortuous cascading path is strange in traffic
scenarios. Further cascading pattern validation or model
tuning is required. The prior method [14] fails to reveal this
issue because it adopted geo-abstracted representations. The
identification of this unexpected geo-network shows that
the geo-mapped representation is effective and intuitive in
reasoning about geo-networks.

5.4 User Study

In this section, we compare GeoNetverse with the alterna-
tive design described in Sec. 3.3 with a task-based within-
subject user study. We aim to further understand GeoNet-
verse’s weaknesses and strengths by collecting user feed-
back of our method. Besides, the alternative combines the
first and second types while our method extends the third
type. We expect that our method outperforms the straight-
forward combination of existing methods. The comparison
can also reveal the cons and pros of these three types.

Baseline. We implement the alternative and consider it
a baseline method in the following user study. It comprises
an individual view and an aggregation view. The individual
view consists of many mini-maps, on each of which an
individual geo-network is depicted, similar to Fig. 1B. The
aggregation view depicts the aggregation geo-network on
a map, similar to Fig. 1C. In both views, edge widths
encode weights. Three interactions were implemented. 1)
Users can filter individuals by clicking nodes or edges in
the aggregation view. 2) When hovering over an individual,
the edges and nodes it contains are highlighted in the
aggregation view. 3) Users can sort individuals by their
weights. The aggregation view provides entries for users
to explore individuals (MA). The individual view enables
analyzing details of geo-networks (ME and MI).

Participants and materials. We recruited 12 participants
(5 females and 7 males) majored in computer science. 4
participants have basic visualization knowledge. Every one
is familiar with maps (e.g., Google Map) and uses them
frequently in daily lives. We used HuMo1 and HuMo2.
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Browsing
Accessibility Adjacency Node Link Follow Path

Q1 Which edge the most people pass through? √ √ √
Q2 Which direction do most people pass through it? √ √ √
Q3 What are the origins of these OD flows? √ √ √
Q4 Which OD flow mainly dominates the direction? √ √ √
Q5 Which four locations are CBDs? √ √ √ √ √
Q6 Which four are residential areas? √ √ √ √ √

Q8 Where do the residents who work in a specified CBD live? √ √ √ √

Q10 What are the shared work paths for these residents? √ √ √

General Geography Tasks

√ √

√

IdentifyCompare Rank Associate

√

√

√Q9

Among these locations, residents of which ones need to
travel across most of the city space (more than or equal
to three edges) to work in this CBD?

√

Levels General Network Tasks
No. Descriptions Topology

Macro Meso Micro
Attribute

Which CBDs do citizens in a specified residential area
tend to go to work? Answer in descending order of

Q7 √ √√

Fig. 12: Ten questions raised for user studies.

Exploring such datasets does not require much domain
knowledge because human mobilities are easy to under-
stand for general users. Thus, general users can be recruited
as participants to obtain reliable conclusions with generality.

Fig. 12 describes the ten questions participants need to
answer. The ten questions are divided into three parts (Q1-
Q4, Q5-Q7, and Q8-Q10) and the questions in each part are
related. These questions are representative in geo-network
analyses. First, they are commonly seen in real-world urban
analysis tasks. Q1-Q4 are similar to identifying high-traffic
areas that are potential bottlenecks. Q5-Q7 are similar to
disclosing black holes/volcanos where anomalous events
tend to occur [25]. Q8-Q10 are similar to analyzing co-
movement patterns [12], [70] that, for example, could help
set up shuttle buses for commuters. Second, they involve
three analysis levels participants need to go through back
and forth. Third, they cover three low-level general network
tasks raised in [34]: topology-based, attribute-based, and
browsing. Finally, they are associated with general geogra-
phy tasks summarized in [50] except for “delineate.”

Procedure. The study is in presence and not virtual.
For each participant, we first introduce the background
knowledge of geo-networks and human mobilities. We then
conduct a tutorial to introduce the alternative system, in-
cluding visual encodings and interactions. The tutorial is
conducted offline. We ensure that they fully understand the
system, the human mobility data, and the questions. After-
ward, they use the system to analyze one of the datasets
and answer the questions in the same order. Afterward, we
introduce GeoNetverse in the same way. Then participants
use GeoNetverse to analyze another dataset and answer
the questions. Only the location distribution and geographic
context are different. Participants know nothing about either
city before. We assume that analyzing them has the same
difficulty. To further mitigate the effects of the datasets, six
participants analyzed the datasets in the reverse order of the
other six. Finally, they fill in a questionnaire (Table 4) with a
7-point Likert scale to comment on GeoNetverse.

During the experiments, the screen and audio are
recorded. The response times for each question are also
recorded. If a participant spends more than 2 minutes on a
question, we remind him to answer “give up.” If a question
depends on the answer to the previous question, we provide
the correct answer so that the analysis can proceed. We
also instructed participants to think aloud so that we could

obtain how they use the systems to perform analyses. The
duration of each participant’s experiment is expected to be
45 minutes to 1 hour.

Results. Correct answers to some questions are in the
form of sets. Some participants gave partially correct an-
swers to these questions because they ignored the geo-
networks with small weights. We marked these answers as
almost correct. Besides, we consider the“give up” response
incorrect. When analyzing the response times, we removed
those records of incorrect answers. Fig. 13 summaries the
accuracies, response times, and questionnaire results.

There could be potential learning effects for this study
as the alternative was presented first and the participants
were performing the same types of tasks. For investigating
learning effects, we use Student’s t-test to examine the
response times of using GeoNetverse and the alternative.
The four questions in the first part (Q1-Q4) are basic and
directly supported by both systems, which can be revealed
by the short response times. No significant difference is
observed for Q1-Q4 (p ≫ 0.05), which indicates the par-
ticipants performed comparably with two systems on Q1-
Q4. We speculate the learning effects on Q1-Q4 are limited.
In particular, participants answer the questions only once
using the alternative. They were not sufficiently trained
during this process to exhibit the learning effect on the
questions. Besides, both datasets and systems are different,
resulting in different manners of seeking answers. However,
we acknowledge that this user study is not rigorous enough
to rule out the learning effect entirely for the rest of the
questions. In the future, it is desirable to recruit more partic-
ipants for additional experiments. The system order for the
participants of odd/even numbers should be alternated.

Accuracy. There is no clear difference as for the accu-
racies. As for Q8, participants tended to give almost cor-
rect answers. They needed to browse more than ten geo-
networks and easily ignore or misunderstand those thin

TABLE 4: Questionnaire.

No. Question
P1 Is GeoNetverse intuitive and easy to use?
P2 Does the LOD rendering help analyze multiple geo-networks?
P3 Do existing crossings not affect your analysis?
P4 Are the geo-networks easily distinguishable from each other?
P5 Does GeoNetverse require less context switching?
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Fig. 13: User study results. “O”: Our method. “A”: Al-
ternative. The response times for Q5, Q7, and Q10 have
significantly difference.

geo-networks. As for Q5 and Q10, participants were prone
to giving incorrect answers or “giving up”, especially with
the alternative. The reasons are in the paragraphs below.

Response time. We use Student’s t-test to analyze re-
sponse times. Significant differences are observed only for
Q5 (t(9)=2.262, p=0.004), Q7 (t(11)=2.2, p=0.02), and Q10
(t(9)=2.262, p=0.0001). The explanations are as follows.

To answer Q5, participants needed to 1) obtain the OD
flows that originate and end at a location and 2) compare
the volumes in and out to determine whether it is a CBD.
GeoNetverse enables such analyses to be performed by
investigating one geo-node. Take Fig. 14A as an example.
Participants can be sure it is a CBD because the inflow is
greater than the outflow. While via the alternative, partici-
pants cannot determine the difference between inflow and
outflow (Fig. 14B). They had first to filter geo-networks
and then compare them drawn on different maps. Two
participants gave up when using the alternative. There is
no significant difference between the times to answer Q6
because residential areas are around the city and have few
inflows. The aggregation view of the alternative system can
support the analysis well (Figs. 14C and D).

As for Q7, the alternative system has an advantage over
GeoNetverse. The small-multiple-like presentation of mini-
maps supports the sorting function but GeoNetverse cannot.
Thus, participants quickly sorted the OD flows by volume
in the alternative system. Nonetheless, participants could
perceive and compare OD flows’ widths within a smaller
screen region rather than switch between multiple maps.
Most participants answered correctly using GeoNetverse 20
seconds longer than the alternative.

As for Q10, participants needed to compare all pairs of
OD flows to identify the shared paths. Using the alternative,
participants had to keep each OD flow in mind and compare
it with another, which was difficult. By contrast, GeoNet-
verse plots all OD flows on the same map. Participants
could identify the shared paths easily. Thus, GeoNetverse
outperformed the alternative by over 100 seconds, and two
participants gave up when using the alternative.

User feedback. All participants appreciated GeoNetverse.
They think our method is easy to learn. Most partici-
pants commented, “the level-of-detail rendering is essential

A CB D

Fig. 14: (A, B) Black hole and (C, D) volcano presented in
our method and alternative, respectively.

and effective.” Summarizing or aggregating similar geo-
networks into one greatly eases the analysis burden by
reducing the number of geo-networks that need to be ex-
amined. When necessary, participants chose to split for de-
tailed information. Besides, most participants said that it is
desirable to use colors to distinguish different geo-networks.
Although some geo-networks are colored similarly, partici-
pants don’t mistake these geo-networks as related because
these geo-networks tend to be far apart and not directly
adjacent. Three participants particularly commented, “in a
colored world map, we also do not consider regions that are not
adjacent but have the same color to be the same country.”

6 DISCUSSION

This study has two implications.
Design consideration. We corroborate the previous finding

on multi-view visualization [6]: “multiple views incur the
cost of context switching.” In the user study, participants
need to browse multiple geo-networks to answer Q5 and
Q10. With the alternative linked views, participants have
to switch between multiple maps. GeoNetverse avoids the
context switching and thus significantly outperforms the
alternative. Thus, in designing visual analytics approaches,
context switching costs need to be carefully considered.

Applications. GeoNetverse is designed for general geo-
networks and hence can be easily applied to analyze
various urban phenomena that can be characterized as
geo-networks. The case studies and the user study have
demonstrated promising applications for city-wide human
mobilities, traffic cascades, and pollution propagation. In
some scenarios, geo-networks are usually associated with
other properties, such as temporal occurrences, propagation
durations, and uncertainties, that should be visually ex-
posed to analysts. However, encoding more properties into
GeoNetverse may lead to information overload and increase
its complexity. To analyze rich properties of geo-networks,
GeoNetverse can be easily extended into a visual analyt-
ics system by linking with other visualizations. In such a
system, GeoNetverse provides a coherent geographic con-
text and multi-level summaries for aggregate geo-networks,
while other visualizations present non-spatial properties.

The scalability can be discussed from visual and com-
putational perspectives. Visualization. First, effective macro-
level analysis demands all geo-nodes to be visible on the
screen with enough space between them to display edges.
Thus, dozens of locations are desirable. Second, if the hi-
erarchies generated by clustering have many levels, users
need to cumbersomely drill down many times to access
original geo-networks (leaves in hierarchies). The numbers
of hierarchies’ levels depend on how geo-networks are
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distributed on the map. We use #G, the average number
of geo-networks per background edge, to characterize the
distribution. The case study on AirVis dataset shows that
GeoNetverse can handle hierarchies that comprise 14 levels
with #G = 8.17. Third, the coloring result depends on
the number of geo-networks and again how they are dis-
tributed on the map. If too many geo-networks have some
background edges in common, the positional graph will be
highly dense and then coloring the geo-networks differently
with a few colors will be challenging. As per the quantitative
experiment, k coloring (k = 8) can effectively handle the
geo-networks retrieved from AirVis dataset by lt = 2. There
are 182 geo-networks and on average 3.9 geo-networks per
background edge (#G = 3.9).

Computation. Our algorithms take over 2 seconds (26 sec-
onds) only on the largest dataset with 317 geo-networks. The
hierarchical clustering generates only a small number of root
geo-networks that need to be arranged by ILP. The rest of
geo-networks can be quickly arranged through hierarchical
traversal of hierarchies. Thus, our algorithms perform fast
on all datasets. Besides, the hierarchical clustering brings
another benefit. Because only root geo-networks rather than
all are input into an ILP solver, the algorithms demand
less memory consumption than the prior method [7]. More
importantly, the algorithms are executed before exploratory
analysis, and therefore they do not result in delays in
interactive analysis.

GeoNetverse has two limitations. First, it requires lo-
cations sparsely distributed. In areas where locations are
densely distributed, the nodes tend to overlap each other.
Furthermore, background edges may seriously overlap each
other at these close nodes. Although nodes can be enlarged
to make edges less overlap, too large nodes will obscure
the geographic information and affect the aesthetics. Spatial
simplification [24], [61] can address this limitation by ag-
gregating close locations into one. Second, the hierarchical
clustering can perform better if it considers weights or other
attributes for similarity measurement. We will investigate
this issue in the future because no well-established methods
can consider both structural and associated attributes to
measure the similarity of networks.

7 CONCLUSION

This study proposes GeoNetverse, a novel visualization
for aggregate geo-networks. By presenting aggregate geo-
networks on one map, GeoNetverse enables multilevel ex-
ploration and analysis in the same and coherent spatial
context. We extend metro-map designs to derive an initial
design and enhance it with a level-of-detail rendering, a
two-phase crossing minimization, and a tailored coloring
algorithm to make it scalable to multiple geo-networks.
We perform quantitative experiments, case studies, and a
within-subject user study to evaluate GeoNetverse.
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