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Fig. 1: Two-levenl visualizations (left and right) in GeoChron. (A) A snapshot of Storyline. (B) Entities in (A) are recolored. (C) The
spatial distribution of (B). (D) The spatial distribution and EvoLens ((E) line charts and (F) trend motifs) of evolution patterns in (B).

AbstractÐIn geo-related fields such as urban informatics, atmospheric science, and geography, large-scale spatial time (ST) series
(i.e., geo-referred time series) are collected for monitoring and understanding important spatiotemporal phenomena. ST series
visualization is an effective means of understanding the data and reviewing spatiotemporal phenomena, which is a prerequisite for
in-depth data analysis. However, visualizing these series is challenging due to their large scales, inherent dynamics, and spatiotemporal
nature. In this study, we introduce the notion of patterns of evolution in ST series. Each evolution pattern is characterized by 1) a
set of ST series that are close in space and 2) a time period when the trends of these ST series are correlated. We then leverage
Storyline techniques by considering an analogy between evolution patterns and sessions, and finally design a novel visualization
called GeoChron, which is capable of visualizing large-scale ST series in an evolution pattern-aware and narrative-preserving manner.
GeoChron includes a mining framework to extract evolution patterns and two-level visualizations to enhance its visual scalability. We
evaluate GeoChron with two case studies, an informal user study, an ablation study, parameter analysis, and running time analysis.

Index TermsÐSpatiotemporal visualization, spatial time series, Storyline

1 INTRODUCTION

Spatiotemporal phenomena (e.g., traffic conditions, air pollution, rain-
fall, and temperature) are continuously monitored by geo-referred sen-
sors, generating large-scale spatial time series (hereafter ªST seriesº) in
many domains, such as geography [15], atmospheric science [24, 46],
and urban informatics [9, 27, 70]. ST series visualization is one of the
important means of understanding spatiotemporal phenomena.

Traditionally, ST series are first depicted in temporal visualizations,
e.g., line charts. These visualizations are then either plotted on a map
by their geographic positions [54, 65], or displayed in a separate view
that is coordinated with a map [43], and thereby can be related back to
the geographic context. The above methods, considered as the strategy
of direct depiction [37], are not effective for large-scale ST series. An
analyst may find it difficult to browse the spatial distribution in the vast
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space and diverse, dynamically changing trends over a long time to gain
insights (e.g., trends, correlation, and anomalies). Another strategy is to
transform ST series by summarizing them into summaries [19,42] (e.g.,
variations of consecutive records [24]) or by extracting patterns from
them [10, 13] (e.g., co-occurrence patterns [23]). These summaries or
patterns, rather than massive raw ST series, are then visually exposed.
Yet, the trend narrative and dynamics of ST series, the fundamental
features of ST series data, are broken into summaries [19] or patterns [9,
23]. Neither patterns nor summaries are depicted over time. Analysts
cannot intuitively perceive how the recorded phenomena develop in
the geographic space over time. For example, how quickly does air
quality in an area deteriorate/improve? How long is the time before it
deteriorates again? Is the deteriorating area expanding?

Each ST series is not isolated in space and time; usually, spatially
close ST series exhibit correlated trends within a time period when
the recorded phenomenon evolves over the region within the time
period [13, 23, 76]. For example, when a factory emitted air pollutants,
correlated upward trends would be observed in the ST series of air
quality sensors nearby the factory. We define the above observation, i.e.,
spatially close ST series exhibit correlated trends in a time period, as an
evolution pattern. These patterns offer the possibility that large-scale
ST series can be visualized in a pattern-aware and narrative-preserving
manner. First, visualizing these patterns enables users to view multiple
ST series meaningfully at once rather than scan many ST series to derive
knowledge in their minds. Second, the ST series data are continuous
between evolution patterns in adjacent but not overlapping periods.
Visualizing such patterns along the timeline can retain the temporal
narrative of the trends and dynamics of the involved ST series. Thus,
we study how to visualize large-scale ST series based on the notion of
evolution patterns and thereby support the analysis of large ST datasets.

The Storyline technique [30, 50] is well-suited for solving the above
visualization problem. Originally, the Storyline was designed to visual-
ize the dynamic relationships between entities and applied to reveal the

https://orcid.org/0000-0002-4477-5292


development of a story, movie, or meeting. For example, Liu et al.’s
Storyline [30] depicts characters’ or entities’ interaction in the same
scene over time in a movie. Each entity is represented as a curve along
a horizontal timeline. Curves are bundled together to form a session
only if the entities are related to each other in the period. By drawing
an analogy (Fig. 2) between an evolution pattern and a session (or an
ST series and an entity), the Storyline can present evolution patterns
over time in a well-organized way and thereby visualize large-scale
ST series. However, two challenges must be addressed to apply the
Storyline technique to visualize large-scale ST series:

Mining of evolution patterns. Evolution patterns should capture
implicit spatiotemporal relations between ST series. Any two ST series
in a pattern should 1) have correlated temporal trends during the time
period of the pattern, and 2) have close geographic positions because
a meaningful correlation tends to exist between the ST series close in
space. Yet, the temporal trends and spatial context are heterogeneous
with different scales and semantics. Fusing them to capture the spa-
tiotemporal relation is non-trivial, let alone to mine the patterns where
multiple ST series should have many such relations with each other.

Presentation of spatiotemporal information. The traditional Sto-
ryline can neither display the fine-grained temporal trends nor provide
the spatial context for ST series analyses. Previous studies [17, 62]
attempted to extend Storyline techniques to spatiotemporal scenarios
but cannot accommodate large-scale datasets with many locations and
long time ranges. The Storyline occupies the most effective visual chan-
nel (i.e., position) and is compact in layout. Thus, popular temporal
visualizations (e.g., line charts) and spatial visualizations (e.g., a map)
are difficult to integrate.

We propose GeoChron (chronicle of geo-space), an interactive visu-
alization for large-scale ST series. For the first challenge, GeoChron
includes a carefully-designed data mining framework. The framework
slices the time span and captures reliable correlation relations between
ST series in each time slice. Afterward, it employs a network formu-
lation to fuse the correlation relations above and the spatial proximity
in a semantics-preserving way and detect communities as evolution
patterns. Consequently, the Storyline layout algorithm can be applied
by considering each ST series as an entity and considering an evolution
pattern as a session. For the second challenge, GeoChron supports a
novel two-level visualization mechanism to present the spatiotemporal
information of large-scale ST series. At the first level, we revise the
Storyline with new interactions and visual encodings, and link it with
a geographic map, to present evolution patterns from a high level of
perspective. At the second level, we employ an EvoLens, a lens placed
on the Storyline, to display more details regarding the temporal trends
of evolution patterns in a narrative-preserving manner. The map is
coordinated with the EvoLens to provide the detailed spatial context of
evolution patterns. GeoChron is comprehensively evaluated by a series
of studies and analyses. In sum, our contributions are as follows:

• We propose a technique called GeoChron by leveraging the evolu-
tion pattern notion to meaningfully organize large-scale ST series
into spatiotemporal partitions and visualize large-scale ST series
in a pattern-aware and narrative-preserving way.

• We develop a data mining framework to extract evolution patterns
(i.e., sessions) from large-scale ST series.

• We design a two-level visualization mechanism based on the
classic Storyline representation to support effective visual analysis
of large-scale ST series in a spatiotemporal context.

• We demonstrate the successful application of GeoChron through
two real-world cases, which expands Storyline’s impact to the
field of big spatiotemporal data analysis.

2 RELATED WORK

This section presents prior studies of visualization of time series, visu-
alization of spatiotemporal data, and Storylines.

In the visualization of time series, the temporal trend is undoubtedly
one of the important features [45, 74]. Temporal trend analysis is
common in the stock market [16, 69], energy [29], and radio [73] fields,
and even many geography related fields like meteorology [38, 46, 68],
environment [31, 41, 64], and urban sciences [13, 59]. There are plenty
of excellent visualizations for time series [2]. This section narrows

down the focus to the most related part, i.e., visualization of ST series.

ST series bring their own challenges in visualization. Analysts
need to relate temporal trends of (usually multiple) ST series to the
spatial context. Geographic maps were used in all visualizations of
ST series without exception. Following Andrienko’s study on geo-
visualization [3], visualization of ST series can be classified into three
types, namely, direct depiction, summarization, and pattern extraction.

Direct depiction. The direct depiction is the most straightforward
and intuitive way. ST series can be plotted on a geographic map by their
geographic positions [75]. Such a kind of visualization can be naturally
extended to 3D environments, where the timeline was placed along the
z-axis [54]. Additionally, ST series can be visualized separately from
the map [43] to avoid visual occlusion and then can be related back to
the map through user interactions.

Summarization. In tradition, ST series are commonly summarized
into multiple heatmaps by time, and each heatmap presented the spatial
distribution of the recorded readings in a time interval [31, 38, 64]. For
example, Meshesha et al. [36] used four heatmaps to depict the distri-
bution of dissolved oxygen in a river over four seasons. Visualization
researchers designed visualizations to summarize ST series into more
in-depth features [4, 19, 20, 24]. For example, Li et al. [24] derived
and visualized variations in recorded climate data to discern climate
changes. Clustering can also help summarize ST series [60]. The ST se-
ries of the same cluster can be visually summarized by a representative
one because they are similar [74]. Yet, existing methods treated spatial
and temporal dimensions separately [60] and thus cannot capture the
spatiotemporal relationship that shifts in both time and space. Besides,
considering the whole time span may ignore local features. To this
end, the sliding window strategy is helpful [1, 40]. A window slides
along time, and its size is far less than the series’ length. Clustering is
performed on the parts of time series covered by the window.

Pattern extraction. ST series exhibit various patterns, e.g., correla-
tion [35], co-occurrence [61], propagation [25], cascading [10], and
causality [76], which are difficult to comprehend due to inherent uncer-
tainty, heterogeneity, or dynamics [11]. Visual analytics solutions have
been developed to assist analysts in interactively exploring and visually
reasoning these valuable patterns in spatiotemporal contexts [9, 13, 23].

If large-scale ST series are depicted directly, analysts may find it
hard to gain insights into data due to the sheer number of ST series to
be investigated. By means of summarization or pattern extraction of
large-scale ST series, analysts may not easily follow the temporal trends
and dynamics of ST series between summaries or patterns. We define
the evolution pattern in ST series and develop a framework to detect the
patterns. Visualizing these patterns over time can retain the temporal
trends of ST series. We aim to propose an evolution pattern-aware and
narrative-preserving visualization for large-scale ST series.

Visualization of spatiotemporal data can be classified into two
main categories, namely integrated view and linked views, based on
the composition of space and time. On the one hand, an integrated
view presents spatial and temporal information in a tightly integrated
manner. The integration way is case-by-case. For example, the tempo-
ral information can be embedded into the map [48] or tightly placed
around the map [24]. Glyph-based designs [14, 66, 67] are commonly
used to integrate spatial and temporal information. In Zeng et al.’s
glyph [71], the temporal distribution of inflow and outflow in a region
was wrapped on a pie chart that counted the POI classes in the region.
On the other hand, linked views adopt two (sometimes multiple) co-
ordinated visualizations to present spatial and temporal information,
respectively [6, 22, 28, 29, 63, 72].

Our design employs linked views. The Storyline is already com-
pactly laid out and takes up many effective visual channels. Thus, the
geographic information is hard to integrate.

Storylines have been applied to various scenarios, such as software
analysis [39], compound event reviewing [32], fiction presentation [30],
video moderation [53], and meeting recalling [44]. Initially, Storylines
were generated by hand. To automate the generation, researcher devel-
oped many algorithms, such as, based on genetic algorithms [50] or
hybrid optimization [30]. Tang et al. [52] realized that a hand-drawn
storyline is more aesthetically pleasing and developed an authoring tool
iStoryline with a new layout optimization framework. Most recently,



Tang et al. [51] improved iStoryline via reinforcement learning.
In the above studies, the relationships between entities are explicit.

For example, two entities have a relationship if the characters of entities
appear in the same scene [30]. By contrast, we need to model implicit
relationships between large-scale ST series and construct sessions. Yagi
et al. [62] made an initial attempt on a small dataset with a few ST series
and short-term observations. Their approach ignored the spatial context
and the temporal sensitivity of relationship modeling, and might require
tedious processes with trial and error to tune session generation.

ST series are also associated with the spatial context. Yagi et al. [62]
used colors to visually link the curves in Storyline with the locations on
a geographic map. Such a manner is not scalable. Hulstein et al. [17]
summarized and compared different ways to combine the spatial context
and Storyline. Although their study did not focus on large-scale data,
their findings provide useful insights into effective visual designs.

3 OVERVIEW

This section presents the overview of our study.

3.1 Term Definition

Locations L = {l1, l2, . . .} are sensors (e.g., air quality monitoring sta-
tions) deployed in geographic space. Each location has a geographic co-
ordinate. A time period is a data structure p that has a start timestamp
p.ts and an end timestamp p.te, i.e., p = (ts, te). In Sec. 4, we will intro-
duce two concepts, time slice and time window. They both have such
a structure. Spatial time series (ST series) V = {V1,V2, . . .} is a set of
time series collected in locations L . The ST series Vi = {vi,1,vi,2, . . .}
comprises chronological records in the location li. These records are
collected at a series of regular timestamps. We use Vi(p) to denote
the subpart of an ST series Vi that belong to the time period p from
p.ts to p.te, i.e., Vi(p) = {. . . ,vi,t , . . .}, p.ts ≤ t ≤ p.te. An evolution
pattern is characterized by 1) a group of ST series Vg ⊂ V geograph-
ically close, and 2) a time period p such that {Vi(p)|Vi ∈ Vg} have
correlated trends. We say the ST series in an evolution pattern have
spatiotemporal relations with each other.

3.2 Background and Research Problem

This study resulted from a long-term experience in spatiotemporal
analysis. We have collaborated with many experts in environmental
science, geography, and urban computing fields in various projects. We
found that although many visual analytics methods have been proposed
for ST series analysis [9, 10, 13, 23], there is still a lack of an intuitive
and effective visualization to display large-scale ST series to provide the
awareness or understanding of data. As mentioned in Sec. 2, ST series
have two fundamental features to visualize, namely, the temporal trend
and spatial context. When dealing with large-scale ST series, analysts
have a vast geographic space to explore, and many long time series to
browse. Existing visualization methods become limited. They are either
unable to highlight meaningful knowledge and avoid the intractable
seeking process of information in numerous ST series by analysts, or
cannot clearly display the inherent temporal trends and dynamics of
ST series. Instead of a complicated application, this paper studies a
fundamental problem, i.e., effectively visualizing the temporal trends
of large-scale ST series with a spatial context.

We formed a team to study this problem, including visualization
researchers as well as three spatiotemporal analysis experts. Each of
the three experts has at least five years of experience in spatiotemporal
data analysis. The target users, including the experts, are any analysts
who need to review, monitor, or analyze ST time series. The team
participates in iterating the design. As we are studying a general and
fundamental visualization problem, no additional experts in the specific
fields are involved in design iteration and evaluation.

According to our observations, each ST series is not isolated and is
oftentimes correlated with others nearby due to the influence of certain
events, exhibiting the evolution patterns defined above. Evolution
patterns serve as an effective and meaningful entry to analyze multiple
ST series at once. Furthermore, analysts can recover the trends of ST
series by examining the patterns in two adjacent time periods if the
patterns are placed over time. In this way, the narrative of temporal
trends and dynamics is preserved between adjacent evolution patterns.
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Fig. 2: Analogy illustration. (left) Telling a story with Storyline. (right)
Visualizing the evolution patterns of ST series.

Finally, evolution patterns may imply causation since they are built on
correlation. Visualizing these patterns can aid in further analysis.

By now, our research problem has been specified on how to present
evolution patterns in large-scale ST series in a narrative-preserving
manner and thereby visualize the ST series effectively.

3.3 Storyline-based Solution

The Storyline is favored for its narrative representation of dynamic
relationships [30]. We introduce the core concepts of the Storyline
based on its popular application in the storytelling of films.

• Entity. An entity refers to a character in a story and is represented
as a curve that progresses from left to right (Fig. 2A1).

• Relationship. Two characters (i.e., entities) have a relationship if
they interact with each other at the same scene (Fig. 2C1), and
vice versa. The relationship between two characters can evolve
over time according to the story’s progression.

• Time Frame. A time frame is when the relationship between any
two entities changes (Fig. 2B1), which depends on the evolution
of a known story. Therefore, the interval between timestamps can
be uneven and irregular.

• Session. A session is defined as the interaction of multiple entities
between two adjacent time frames (Fig. 2D1).

We develop GeoChron adapted from the Storyline to address the
research problem in the following two stages.

Transforming ST series into sessions. We first draw an analogy
between an entity and an ST series (Fig. 2A2). In this way, a session
where entities have spatiotemporal relations with each other in the time
slice due to a certain event (Fig. 2C2) is exactly an evolution pattern
(Fig. 2D2). Leveraging the analogy, the Storyline offers a narrative-
preserving manner to visualize evolution patterns. The first challenge
is that the spatiotemporal relations between ST series are implicit and
dynamic in both space and time. Determining the relations effectively is
non-trivial, let alone detecting the complex sessions with multiple such
relations. To address this, GeoChron includes a data mining framework
to detect evolution patterns from large-scale ST series.

Incorporating spatiotemporal visualizations. Evolution patterns
are well organized in a narrative way by analogy to sessions in a
Storyline. The second challenge is the limited space in the compact
Storyline hinders the embedding of the spatiotemporal visualization of
ST series. In addition, Storyline occupies the visual channel of height,
which is originally used to reveal the temporal trend in line charts. To
this end, GeoChron includes a novel two-level visualization mechanism
based on the Storyline to encode the spatiotemporal information from
overview to details.

4 PATTERN MINING

This section presents the mining framework in GeoChron for detecting
evolution patterns, i.e., sessions, from large-scale ST series. The frame-
work should 1) capture stable and reliable correlation relations, and 2)
fuse the geographic context and temporal features.

Step 1: Slicing Time Span. The first step is to transform the continuous
temporal dimension into discrete slices. After detecting sessions for
each slice, we can apply Storyline. Our framework divides the time
span evenly into T slices, denoted as {s1, . . . ,sT }, with equal size
(e.g., Fig. 3A). Each time slice s = (ts, te) has a time period structure.
The slice size depends on the domain-specific scenario. For example,
air pollution data are often reviewed on a daily basis [55], and the
size of one day is appropriate. A smaller size is not enough to capture
prominent features, and a larger size may miss the dynamics. Afterward,
Steps 2-4 below are executed for each time slice.
Step 2: Determining Correlation in a Time Slice. Pearson cor-
relation coefficient is the most widely used correlation metric. The
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Fig. 3: Framework of evolution pattern mining. (A) The time span is
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based on the time window and constitute a relation network. (D) The
communities in the relation network of (C) form six evolution patterns.
(E) The patterns in (D) are depicted as sessions in a Storyline.

correlation between two ST series Va and Vb in a time slice si can be
straightforwardly computed as r(Va(si),Vb(si)), the Pearson correla-
tion coefficient between their subparts within the time slice. Va and
Vb are correlated if r(Va(si),Vb(si)) is larger than a given threshold
thr. However, the coefficients can be unstable across adjacent time
slices, e.g., due to subtle and local event effects, or data measurement
errors. For example, the coefficients between Va and Vb in si−1, si, and
si+1 could be 0.75, 0.45, and 0.8, respectively. If thr = 0.7, Va and Vb

becomes correlated in si abruptly. An individual line may suddenly
break away from a session and then return. As a result, the produced
Storyline may be hard to read and even meaningless. To capture promi-
nent patterns and produce readable visualization, we need to smooth
out the correlation relationships between ST series over time. However,
averaging these coefficients is not advisable because they cannot be
added or subtracted arithmetically.

Thus, we use a wrapping window strategy based on a sliding window.
A set of wrapping windows {w2, . . . ,wn−1} is generated by sliding a
three slice-sized window along time. Each one wraps one focus slice
and two adjacent slices and also has a time period structure. In Fig. 3B,
the time window wi wraps si−1, si, and si+1. The correlation relation
between Va and Vb in a time slice si exists if ra,b,i = r(Va(wi),Vb(wi))>
thr holds true. If ra,b,i is still a sudden compared to ra,b,i−1 and ra,b,i+1,
we smooth it out by replacing it with ra,b,i−1 or ra,b,i+1.

In this way, we consider more observations in adjacent time slices,
while maintaining the analysis at the time slice granularity. If the
records in si are uncorrelated due to subtle effects, ra,b,i−1, ra,b,i, and
ra,b,i+1 tend to be true since the records in si are only one-third of the
records they consider. If ra,b,i is false due to prominent effects in multi-
ple slices wrapped by wi, ra,b,i−1 and ra,b,i+1 tend to be false, because

r(Va(wi−1),Vb(wi−1)) and r(Va(wi+1),Vb(wi+1)) consider two-thirds
of the records that r(Va(wi),Vb(wi)) considers. We do not adopt a
sliding window whose size varies adaptively. Considering too many
observations may de-emphasize the correlation/uncorrelation under a
certain time slice and produce inaccurate results.

In this step, we determine the pairwise correlation relations for all
ST series pairs in a time slice.

Step 3: Modeling the Relation Network in a Time Slice. For each
time slice, we construct a relation network based on the correlation
relations (Fig. 3C). We introduce a threshold thd to filter out those
distant pairs of ST series. Meaningful correlations tend to exist between
the observations in close locations. After filtering, the remaining pairs
of ST series naturally constitute a relation network, where connected
nodes (ST series) are close in space and correlated in the time slice.

Such a network-based formulation fuses the temporal correlation and
geographic context well. Assigning weights to each aspect and sum-
ming them to form a distance or similarity measure for clustering may
be a straightforward approach. Yet, the two aspects have distinct scales
and semantics, making weight tuning difficult, and the summation lacks

semantic clarity. By contrast, our formulation preserves the semantics
in time and space respectively to construct a relation network.
Step 4: Detecting Evolution Patterns. ST series belong to the same
session if they are correlated in the time slice and are close in geo-
graphic space with each other. Such ST series exactly form a com-
munity in the relation network. Therefore, we apply the Louvain
algorithm [5], a well-established method, to detect communities. The
Louvain algorithm works on the network structure and does not require
hyperparameters. Each ST series can only belong to one community.
Fig. 3D shows six communities detected from the network of Fig. 3C.
The ST series enclosed by a gray ellipse belong to the same community.

An ST series has correlation relations with most other ST series
in the same pattern. In this way, patterns’ geographic ranges are not
limited by thd . Two remote ST series can be in the same pattern if they
both have spatiotemporal relations with most others in the pattern.

Multiple communities (e.g., Fig. 3D) are detected for each time slice
by the framework. Communities are then regarded as sessions (e.g.,
Fig. 3E) in the Storyline. The detection module has the time complexity

of O(|L |2T ). |L |2 comes from the Louvain algorithm [56].

5 ORIGINAL STORYLINE LAYOUT METHOD

Among existing Storyline layout methods, we choose StoryFlow [30]
because it is easily implemented and widely extended by recent stud-

ies [51±53]. StoryFlow has the time complexity of O(|L |2T +T 3).
Below, we briefly introduce StoryFlow [30].

Step 1: Ordering. StoryFlow [30] first transforms the sessions into
a layered graph. Each time slice is viewed as a layer and each session
as a node. An edge exists between nodes if the two sessions have at
least one entity in common. StoryFlow [30] formulates the problem of
ordering sessions across time slices as finding the layered layout of the
graph with the least number of edge crossings. A good layout of the
layered graph can be obtained by the classic Sugiyama’s algorithm [47].

Step 2: Aligning. This step aims at minimizing the wiggles of
curves by aligning sessions and entities between adjacent time slices.
StoryFlow [30] formulated the problem of aligning the sessions in si

and si+1 respectively as a weighted Longest-Common-Subsequence
(LCS) problem [7]. StoryFlow tends to align two sessions if they have
sufficient entities in common while trying to maximize the sum of
common entities over all pairs of aligned sessions. After the sessions
are aligned, the entities can be aligned by finding the common entities.

Step 3: Positioning. Two adjacent entities in the same session
should have a space din between each other, and two adjacent sessions
should have a space dout between each other (Fig. 4E). dout > din.
Aligned entities in the aligned sessions should have the same y-positions
and can be rendered with straight lines. Sessions and entities should
be compactly positioned under the constraints above. StoryFlow’s
positioning method based on the quadratic programming [30] usually
runs out of memory for large-scale data [49]. Thus, we adopt a heuristic
implementation of StoryFlow’s positioning method to position entities
by sweeping time slices back and forth.

First, the entities in s0 are positioned from top to bottom one by one.
Second, si can be a position reference for si+1 (sweep forth). An entity
in si can determine the position of its aligned entity in si+1 and the
session that contains this aligned entity. If the remaining entities in
si+1 cannot be inserted under the constraints above, expand the space
between the aligned entities in si+1 so that all entities in si+1 can be
positioned (Fig. 4A). Entities in si,si−1, . . . ,s0 need to be repositioned
(sweep back) with the reference of si+1.

6 VISUAL DESIGN

This section presents the design goals and visual designs of GeoChron.

6.1 Design Goals

In most cases, target users may not necessarily have expertise in visual-
ization and visual analytics. Thus, GeoChron should employ intuitive
and easy-to-understand designs based on the Storyline representation to
facilitate their understanding and interpretation of the large-scale data.

We conduct an iterative design process. In each iteration, we develop
a prototype and perform tentative explorations on an air quality dataset
(Sec. 8.1.1) via this prototype. Then, we summarize the observed



shortcomings and then improve the prototype for the next iteration.
After multiple iterations, we conclude five design goals as follows.

G1 Enable session-based analysis. Evolution patterns serve as entries
for analyzing multiple ST series that are close and correlated.
Since every pattern is represented as a session in the Storyline, the
visualization should enable interactive analysis based on sessions.

G2 Support effective tracking. The correlation relationship between
ST series is dynamic and thereby evolution patterns present com-
plex spatial and temporal relationships between each other. There-
fore, the design should implement flexible interactions for tracking
the evolution patterns as well as ST series in the Storyline.

G3 Visualize temporal trends. Time series trends are the basic fea-
tures in ST series [74]. Trends can facilitate the locating of interest-
ing periods, e.g., when the readings of multiple ST series suddenly
rise or fall. Besides, trends help users interpret dynamic correlation
relations, e.g., why two ST series are correlated. Hence, the design
should visually display the trends of time series over time.

G4 Link spatial and temporal information. The spatial information
of ST series is important for understanding evolution patterns.
A geographic map is difficult to integrate into the compact and
already information-dense Storyline. Therefore, linking the spatial
and temporal information is more suitable than integrating them.

G5 Provide multi-level analysis workflow. Large-scale ST series
can exhibit rich information, e.g., the time series trends over a
long time, spatial distribution on a vast space, and many-to-many
spatiotemporal relations. Multi-level analysis is a well-known
effective manner for accommodating a large amount of information.
Thus, the design should support a multi-level analysis workflow.

The final design satisfies these goals to effectively visualize large-
scale ST series. Below, we introduce the design from two aspects,
namely, layout refinement and two-level visualization.

6.2 Layout Refinement

First, we need to further refine the Storyline layout generated by Sec. 4
so that it can compactly and effectively display large-scale ST series.

Loose Alignment. Feeding numerous sessions into the Storyline
layout algorithm above may produce a hard-to-read representation. The
sessions sparsely distribute vertically and users have to scroll a lot
to browse them. The main reason is that when two aligned entities
are straightened, the straightening process pushes other sessions up
or down entirely over many time slices (Fig. 4A), consuming much
vertical space. StoryFlow’s solution [30] also has this issue. To alleviate
this issue, we discard those session pairs whose number of entities in
common is less than a threshold thc. For example, compared with
Fig. 4B1, Fig. 4B2 is more space-efficient since the curve pointed by
the red arrow is not aligned.

Session Filtering. Numerous sessions are overwhelming. Thus, we
filter out the session if 1) its size is less than a threshold ths and 2)
none of the entities it comprises goes to the sessions with a size ≥ ths

in the two neighboring slices. In this way, Fig. 4B2 is transformed to
Fig. 4B3. Not only the overwhelmingness is alleviated, but also the
vertical space is further saved.

Curve Hiding. Wiggles cannot be totally avoided. What is unbear-
able is the up-and-down movement of the curve caused by wiggles.
Specifically, these nearly vertical parts of the curve lead to visual clutter
and break the visual continuity of aligned sessions (G2). Such an issue
is particularly bad when the wiggle distance is large. To this end, we
hide the main vertical part of a curve if the wiggle distance is larger
than a threshold thw (Fig. 4C). The parts where the wiggle starts and
ends are left to reveal where the curve goes.

These methods can improve readability but also bring different de-
grees of information loss. Users need to make a trade-off between
information completeness and readability on demand. Moreover, the
readability should be perceived by users. For example, how much do
the curves affect the visual continuity? How much do users have to
scroll to browse patterns? Do the patterns overwhelm users? Therefore,
GeoChron allows users to specify the above parameters via sliders.

Enforce Alignment of Sessions. Previous methods [30] enable users
to straighten the curve of an entity they are interested in. Without visual
wiggles, users track the entity’s evolution more easily. We extend this
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Fig. 4: Layout refinement. (A) Vertical space consumed by the positioning
process. (B) The layout after loose alignment and session filtering. (C)
Curve hiding. (D) Enforced alignment of sessions 2⃝ and 5⃝.

idea from an entity level to a session level (G1) by enabling straighten
multiple entities as much as possible for ST series tracking (G2).

After a user clicks a session, for each time slice, the session with the
largest intersection with the clicked session is called the target session.
Then, Step 2: Aligning will be re-run as follows. For each of two
adjacent time slices si and si+1, we first align the two target sessions in
si and si+1 if the loose alignment constraint is satisfied. Afterward, the
sessions in si (and in si+1) are divided into a top part and a bottom part
by the target session. We use the LCS-based method [7] to align the
two top parts and two bottom parts, respectively. For example, after the
session 2 in Fig. 4D1 is clicked, the layout is transformed to Fig. 4D2.

6.3 Two-level Visualization

GeoChron employs a two-level visualization mechanism (G5) to present
evolution patterns in a spatiotemporal context.

6.3.1 Tracking Overall Evolution Patterns

At the first level, we modify the visual encodings in the Storyline and
add new encodings to the Storyline to present evolution patterns from a
macro perspective (Fig. 5A and D). We still call it Storyline, since it
retains the visual identity of the classic Storyline. Users can obtain an
overview of ST series and locate a time period or patterns of interest.

Visualizing time series trends (G3). Traditionally, time series are
visualized with line charts, and the trends are reflected by the heights of
lines. However, in the Storyline, the visual channel of vertical positions
is occupied with encoding the relationship among ST series over time.
Finally, we encode the trends with shades of curves.

Here, we take the blue color for illustration. We first select two
shades of blue, light blue and dark blue, and generate a linear inter-
polation between them. Then, users can specify a piecewise linear
mapping function shade(v) via the user interface of Fig. 5B. shade(v)
can map each value v in a time series to a shade value between 0 and 1.
1 corresponds to the dark blue shade and 0 corresponds to the light blue
shade. Subsequently, the shade value is used to generate a color that
falls between the light and dark shades of blue. For example, given the
mapping of Fig. 5B, higher values have colors with darker shades. For
each curve Ci, we evenly sample a series of values from Vi and obtain
the corresponding colors. We finally generate a gradient color stroke
for Ci using these colors to reflect the trends of the time series.

Moreover, we set din (the space between the adjacent entities in a
session) as 0. In this way, the trends of the ST series in a session can
be clearly revealed (G1). For example, the session in Fig. 5A5 clearly
indicates that multiple ST series have correlated upward trends during
the period. In addition, the layout is further compressed to save space.

Linking spatial context with the Storyline (G4). We implement a
geographic map, where each ST series is plotted as a dot according to
its geographic position (Fig. 5C). The map hovers above the Storyline.
Users can interactively drag and drop it. Afterward, we need to link the
dots on the map to the curves in the Storyline. Due to a large number of
involved dots, it is inappropriate to assign each dot a unique color like
previous methods [10, 62]. Moreover, our study focuses on evolution
patterns (i.e., sessions) rather than individual ST series (i.e., entities).
Thus, we design an interactive session-based coloring (G1).

Initially, all curves and dots have the same default color (blue in our
study). If users identify an interesting session, they may want to obtain
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its geographic distribution and track how the entities evolve over time
(G2). To do that, they can pick up a color (Fig. 5E) and click a session
to color the entities that are comprised by the clicked session. The dots
of these colored entities will also be colored on the geographic map. We
provide multiple optional colors, and users can color multiple sessions
differently. In this way, users are enabled to establish the geographic
distribution of sessions and compare the evolution of different groups
of ST series. Fig. 5D shows the colored Storyline from Fig. 5A by
mainly coloring the sessions highlighted in Fig. 5A1, A2, A3, A4, and
A5 with purple, purple, green, orange, and red, one by one. Fig. 5F
shows the geographic distribution of the colored entities.

The coloring process is difficult to automate, nor should it be au-
tomated. There are innumerable coloring results with different visual
patterns. We leave the process of visual pattern discovery to users
because users know what their concerns are better than the machine.

6.3.2 Drilling Down Into Evolution Patterns

After locating a time period and sessions of interest, users drill down
to perform detailed analyses. We design an EvoLens (illustrated in
Fig. 6C) to support detailed analyses. Users first brush a rectangle on
the Storyline to select a time period and sessions. Then, the EvoLens
pops up on the right side of the map. The EvoLens together with the
map present spatial and temporal details of evolution patterns.

Showing detailed temporal trends (G3). The EvoLens (e.g.,
Fig. 6C) can be viewed as a len that enlarges the brushed sessions
(e.g., Fig. 6A). Each session (e.g., Fig. 6A 1⃝) is replaced with a line
chart (e.g., Fig. 6C a⃝). If the entities belong to the same session, the
corresponding time series are displayed as lines in the same line chart.
Each line has the same color (without shades) as the curve in Storyline.
The y-axis of all line charts represents the value range of all records.
In this way, the recorded values in ST series are encoded by the height
rather than the gradient shade and thus can be perceived more accu-
rately. The line chart is the most common temporal visualization in
people’s daily life and most people are very familiar with it.

Evolution patterns consider the correlated trends between time series.
However, correlated ST series are sometimes not necessarily similar
by values (e.g., Fig. 6E) but should have similar trends. To reveal their
correlative trends, we design a trend motif (Fig. 6F). We denote the
subpart of an ST series in a line chart as a sub-ST series. For a line
chart, we respectively normalize each sub-ST series there according
to its max and min values. For each time stamp in the line chart, we
have a set of values, each of which is from a normalized sub-ST series.
Afterward, we obtain the lower quartile qn(0.25), median, and upper
quartile qn(0.75) for these values. Finally, the lower and upper quartiles
in all time stamps are visualized with an area. The medians in all time
stamps form a median line. The line is superimposed with the area,
constituting a trend motif. Via the trend motif, the correlative trends of
multiple ST series can be revealed in circumstances where the ST series
are dissimilar in values from each other. For example, the trend motif
of Fig. 6F clearly shows an upward trend of the ST series in Fig. 6E.

Preserving the narrative between patterns. We maintain the
analysis context of entities’ transition and session alignment to preserve
the narrative of evolution patterns (G2). These line charts are positioned
according to sessions’ positions in the Storyline as follows. First,
two charts are horizontally aligned (e.g., Fig. 6C a⃝ and C c⃝) if their
corresponding sessions are aligned (e.g., Fig. 6A 1⃝ and A 3⃝). Second,
charts are vertically aligned (Fig. 6C a⃝ and C b⃝) if their sessions
belong to the same slice (Fig. 6A 1⃝ and A 2⃝). Third, the charts in
the same slice are placed in the same order as their sessions in the
Storyline. Finally, if there are entities passing through two sessions in
the Storyline, the charts are connected with a Bezier curve from left to
right. For example, Fig. 6C a⃝ is connected to Fig. 6C c⃝ and C d⃝. The
width encodes the number of entities that pass through them.

At the top of each column are the start and end times of the time
slice. There is also a button that allows users to choose whether to show
the motifs on the line charts.

Investigating evolution patterns in space and time. EvoLens is
coordinated with the map (G4). When users hover over a time slice
(Day 3 in Fig. 6C), the map displays the geographic distribution of each
session in this time slice (Fig. 6B). Specifically, we generate a convex
hull on the map for each session to cover the dots the session comprises.
The number of sessions in this view is less than in the Storyline so that
we can overlay visual elements on the map. When users hover over a
line chart, the borders of both the line chart and the hull become thicker.
Via the above interactions, users can interactively investigate how ST
time series evolve correlatively from a spatiotemporal perspective.

7 IMPLEMENTATION

GeoChron is a web-based application with a backend and a frontend.
The backend is implemented with Python 3.8. It serves the generation
procedures of sessions and Storyline layout. In particular, the backend
caches pairwise correlation coefficients among all ST series in every
time window. Relation networks thereby can be constructed quickly
after receiving the parameters. The Louvain algorithm is supported
by the package sknetwork. All parameters are default, as they worked
well in our multiple trials (See Sec. 8). We also employ a parallel
framework Multiprocessing to detect communities for multiple time
slices simultaneously. The frontend is implemented with TypeScript. It
provides interactive visualizations for users. The Storyline is rendered
on HTML5 canvas rather than HTML5 svg for efficiency.

8 EVALUATION

GeoChron is evaluated with real-world case studies, an informal user
study, an ablation study, parameter analysis, and running time analysis.

8.1 Case Studies

Two experts together perform case studies on two real-world datasets
by using GeoChron in person. The insights gained are confirmed by
another expert. Below, ªweº refers to the two experts.



Two real-world case studies evaluate GeoChron as follows. First, the
effectiveness and usability of GeoChron are illustrated. GeoChron en-
ables users to view and analyze large-scale ST series intuitively, which
is important in many scenarios, such as data review and real-time mon-
itoring. Initial hypotheses regarding the evolution of spatiotemporal
phenomena can also be established. Second, the pattern mining frame-
work is justified as the evolution patterns presented in the cases have
correlated trends of spatially close ST series. Third, the Storyline has a
readable layout, which shows the heuristic positioning is acceptable.

8.1.1 Air Quality in China

In the first case study, we analyzed how the air quality in China evolved.
A full demonstration of this case is available in the supplemental video.

Dataset. The dataset comprises 448 ST series covering nearly all of
China. Each ST series records the air quality index (AQI) of a region
from January 1 to July 3, 2018, at an hourly granularity. There are 448
(ST series) × 4,416 (timestamps) records, ranging from 0 to 500.

Parameters. Prior to the analysis, we set the size of the time slice
to one day to obtain daily patterns and obtained 184 time slices in
total. The values of this dataset had a skewed distribution (Fig. 5B). We
adjusted the shade mapping and exploited the shade channel to highlight
the serious pollution periods. The final mapping is shown in Fig. 5B.
There were five parameters to be tuned interactively to obtain an ideal
layout with many aligned sessions and little visual clutter. First, thd

could be determined based on how far the wind can blow in a time slice.
Second, a too-large thr would cause few ST series to be considered
correlated and few ST series in the patterns, and vice versa. Third,
we focused on the patterns with larger sizes, so we tended to increase
ths more than thc (See Sec. 8.3 for how ths and thc work). Finally,
we tuned thw to reduce clutters after the layout had been determined.
GeoChron can compute layouts and render results within seconds (See
Sec. 8.4). After several trials, we got satisfactory parameter settings:
thd = 300km, thr = 0.7 , thc = 3, ths = 7, and thw = 140px.

Tracking Overall Evolution Patterns.

Coloring. In the Storyline (Fig. 5A), we first noticed several sessions
with large sizes and dark strokes, denoted as Fig. 5A1-5, respectively.
We were interested in their spatial distributions and temporal evolution,
and colored them one by one. A1 and A2 are colored purple. A3, A4,
and A4 are colored green, red, and black, respectively. Generally, the
sessions with more ST series in common tend to receive the same color.
The final result was in Fig. 5D, where most of ST series were colored.

Spatial distribution. The map shows that these ST series were mainly
in the North China Plain and the Yangtze Plain (Fig. 5F and F1). On flat
terrain, air pollutants are easily transported (e.g., by winds) or diffuse.
ST series with different colors constituted different geographic clusters.
For example, the red and orange ST series were located in the BTH
(Beijing-Tianjin-Hebei) region and Yangtze River Delta, respectively.

Temporal dynamics. The Storyline revealed how ST series correl-
atively evolved over a long time span. Overall, correlations tended
to exist between geographically adjacent ST series. For example, the
red ST series (BTH region) evolved with the purple ones (Shandong
Province) during the period of Fig. 5G. Another example was found
in the orange ST series. They were strongly correlated with each other
over the whole time span. They sometimes were correlated with the
northern purple ST series (Fig. 5I and J).

Drilling Down into Evolution Patterns.

Air Quality in North China. In Fig. 5H, we observed that a group
of ST series gradually splits into four over time. The red, green, and
purple ST series all exhibited an increasing trend over time as their
strokes became darker. In particular, the red ST series covered Beijing,
the capital of China. Fig. 1A enlarges Fig. 5H. To reveal clear patterns,
we further colored Fig. 1A1 with purple and color Fig. 1A2 with black
and then obtained Fig. 1B and the spatial distributions in Fig. 1C. We
brushed Fig. 1B and obtained the details shown in Fig. 1D, E, and F.

First, the purple and green ST series were distributed in the center
and geographically close (Fig. 1D, D2, and D3). Their readings had
correlatively increased and reached a high level of air pollution within
the first three days (Fig. 1E and F). Afterward (Day 4), the purple and
green ST series became uncorrelated as the purple ST ones continuously
increased while the green ones fluctuated. They separated into left
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and right regions (Fig. 1D4). Second, the black ST series were less
correlated with others and the readings did not rise very high (Fig. 1E1).
It might be because of the sea breeze blowing from three sides blew
away air pollution quickly. Finally, the red ST series experienced a
decrease on the third day, followed by an increase during the final
three days, whereas the other ST series remained on a downward trend
(Fig. 1E and F). A hypothesis suggests that during the last three days, an
additional pollution source may have polluted the BTH region. Testing
the hypotheses requires additional data and in-depth analysis [10, 13].

Air Quality in Yangtze River Delta. During the period of Fig. 5I,
serious pollution occurred in the Yangtze River Delta and its northern
region. We wondered whether there was a propagation process between
them. We wanted the orange and purple ST series to be placed closer.
Thus, we enforced the alignment on the session of Fig. 5I1 and obtained
the layout of Fig. 6A. The sessions with more orange and purple entities
were aligned with a higher priority. Fig. 6C shows the details of Fig. 6A.

At first, half of the orange ST series were correlated with the purple
ones (Day 1 in Fig. 6C). Afterward, the orange ST series separated into
another session because they had a subtle drop during the period of
Fig. 6D1. As a result, the orange ST series reached a high level of air
pollution one day later than the purple one. In the last three days (Days
3, 4, and 5 in Fig. 6C), the orange and purple ST series had slightly
different trends and both exhibited subtle declines around 4 pm each
day, indicated by the red dashed line in Fig. 6D. The above observations
implied that there might be propagation processes of air pollution from
north to south in the first two/three days. Afterwards, the air in both
regions was filled with air pollutants. The fluctuation/decline trends
in the orange and purple ST series were different since the industrial
structure and pollution purification capabilities of the two regions were
different. We consulted historical weather data, and at that time Yangtze
River Delta did receive strong cold air from the north, which caused
blizzards and brought massive air pollutants.

8.1.2 Temperature in China

We visualized the temperature time series in China in the second case.

Dataset. The dataset comprises 393 ST series covering nearly all of
China. Each series records the temperature of a region from January 1
to December 29, 2020, at a daily granularity. There are 393 (ST series)
× 364 (timestamps) records, ranging from -37.8 ◦C to 43.2 ◦C.

Parameters. We set the size of the time slice to 7 days. In the
analysis of temperature data, one of the most concerning issues is the
cold wave [33]. Thus, the shade mapping was adjusted to focus on
the range between 0 ◦C and 20 ◦C (Fig. 7A1). We finally obtained
Fig. 7A. We kept thd as 300 km in the first case. We increased thr to
0.9 because the change in temperature is often stable and is less subject
to local disturbance. Also because of this, the patterns with small sizes
are fewer than in the first case study. We decreased ths to 4. Other
parameters were thc = 4 and thw = 280px after multiple trials.

Analyzing Overall Evolution Patterns. Few patterns were de-
tected during the summer (the middle part of Fig. 7A). Most parts
of China were very hot in summer and the summer monsoon did not
bring changes in temperature but rainfall. We then noticed that the



A

B

C

D

0℃

20℃

E F

A1

E1 F1

B1

B2

C1

Fig. 7: Temperature in China. (A) Storyline with (A1) the shade mapping.
(B) Upper right corner of (A), where (B1) periodicity and (B2) drops are
observed. (C) Colored result of (B). (D) The spatial distribution of colored
ST series in (C). (E) Line charts and (F) trend motifs of (C1), where
obvious drops are observed in (E1, F1).

entities in the upper right corner of Fig. 7A) were lightened. The time
was early winter. Fig. 7B was the enlarged part of there. There was
periodic warming and cooling over the period in Fig. 7B1. Besides,
a significant drop in temperature occurred during the two weeks in
Fig. 7B2. Compared with the summer monsoon, the winter monsoon
blowing from Siberia made the ST series correlated because it caused
large-scale cooling. We colored these sessions (Fig. 7C) and found that
they were mainly distributed in northern China (Fig. 7D).

Drilling Down into Patterns. Fig. 7E or F shows the details of
Fig. 7C1. First, the correlation relationship of the ST series was stable.
Second, in the first week, the ST series fluctuated and no obvious
decrease was observed. In the second week, the ST series, except for
the black ones, exhibited obvious drops of around 10 ◦C (Fig. 7E1).
The trends can be further validated in Fig. 7F1. This cold wave was
considered one of China’s top ten weather and climate events in 2020
by the China Meteorological Administration.

8.2 Informal User Study

We perform an informal user study to evaluate the intuitiveness and
legibility of the proposed visualizations.

Participants. We recruited six participants (P1-6) from the same
school. P1 knows both Storyline and spatiotemporal data. P2 and
P3 know Storyline but not spatiotemporal data. P4 and P5 know spa-
tiotemporal data but not Storyline. P6 knows nothing about both. P1-4
are graduates majoring in computer science. P5 and P6 are under-
graduates majoring in geographic information science and agricultural
engineering, respectively, and they have no visualization expertise.

Procedure. We first introduced GeoChron’s visual encodings and
interaction. We then showed each participant the GeoChron of the first
case. In particular, GeoChron was colored as Fig. 5D and then was
subjected to enforced alignment according to Fig. 5I1. The participant
used GeoChron via desktop in person to finish three tasks: 1) ªLocating
the period when the air quality in the red, green, and purple locations
are generally correlated with each other.º 2) ªLocating the period
when the air quality in a large area of the Yangtze River Delta Plain
deteriorates significantly.º 3) ªFollowing task 2, describing how the air
quality deteriorates (spatiotemporal trends in the first three days) by
days using EvoLens.º For task 3, they were only required to describe
the objective observations with text. These open-ended tasks required
participants to imitate the process of experts seeking information and
analyzing ST series. Finally, each one filled out the ICE-T question-
naire [57] to rate GeoChron from Insight, Confidence, Essence, and
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Fig. 8: ICE-T questionnaire results.

Time perspectives (7-point Likert scale). We used think-aloud protocol
to collect their feedback. The procedure lasted around 40 minutes.

Results. All participants quickly and correctly located the periods in
Fig. 5G and H for task 1 and the period in Fig. 6A for task 2. For task
3, all participants made descriptions similar to the case presented in
Sec. 8.1.1. In particular, they all noticed 1) a small decline in the orange
ST series on the first day (Fig. 6D1), 2) a rise in the orange ST series a
day after the rise in the purple ST series, and 3) the medium/high level
all ST series reached on the third day (Day 3 in Fig. 6C). It can be seen
that all participants, even P6, did understand GeoChron’s visualizations.

Fig. 8 summarizes the ICE-T scores. 95% C.I. are 6.41 ± 0.26 (I),
5.45 ± 0.60 (C), 6.58 ± 0.22 (E), and 6.27 ± 0.44 (T). All partici-
pants agreed that GeoChron can provide insights, facilitate exploration,
and reveal the essence of data, as the scores of Insight, Essence, and
Time are about 6. The Confidence scores are relatively low, which is
reasonable. We assume the dataset is cleaned and thus do not design
visualizations for data quality. P2 and P6 also commented, ªGeoChron
is somehow misleading if ST series that are close in space are not
placed together in the Storyline.º Their confusion was dispelled during
the study after we clarified the encoding of the vertical position again.

All participants agreed that GeoChron’s visualizations are intuitive
and easy to understand. According to participants’ comments, the
intuitiveness and ease of learning benefit from the proper use of existing
good visualizations. The classic Storyline itself is easy to understand.
The two-level visualizations built on it also have intuitive and simple
encodings. In the first level, GeoChron uses the gradient shade and color
to encode the temporal trends and geographic distribution, respectively.
In the second level, GeoChron employs line charts to visualize the
temporal trends in a familiar way.

Due to the limited paper space, we leave more study details in
an appendix, including interface screenshots when doing the tasks,
participants’ descriptions for task 3, and the filled ICE-T questionnaires.

8.3 Ablation Study and Parameter Analysis

We refine the traditional Storyline via 1) curve hiding, 2) loose align-
ment, and 3) session filtering. In addition, we claim the 4) sliding
window strategy could improve visual quality in Sec. 4. We figure out
how they affect the layout based on the dataset in Sec. 8.1.1.

We test the curve hiding and sliding windows via ablation stud-
ies following the first case. First, we set thw = +In f inity to disable
the curve hiding. Fig. 9A shows a snapshot of the result. The nearly
vertical curves bounce up and down on the screen, resulting in visual
distractions. Moreover, some aligned sessions are meant to be visually
continuous, but this continuity is broken by these curves (e.g., Fig. 9B).
Smaller the thw, the less clutter. Second, we directly use the correlation
coefficients in time slices rather than sliding windows and generate the
layout in Fig. 9C with the same parameters in the first case (ths = 7
and thc = 3). We remove the gradient shade and focus on the layout.
Compared with the time window-based results in Fig. 5D, the corre-
lation relationship between ST series is more dynamic. In particular,
the dashed ellipses in Fig. 9D and E highlight the unexpected deviation
of curves. Entities part suddenly and come back together again, which
may be due to the slightly offset time slices, subtle pollution events, or
errors. Such deviations lead to visual clusters and prevent users from
locating prominent visual patterns. It can be concluded that the sliding
window does improve the readability of representations.

Afterward, we study how loose alignment and session filtering
affect the layout of GeoChron via parameter analysis on ths and thc.
We obtain different layouts generated under different combinations
of ths and thc. Then, we use the average height of all time slices to
quantify each layout’s height (Fig. 10A). The layout is high when these
two parameters are small (e.g., Fig. 10F). Users may have difficulty
browsing the visualization. Increasing the two parameters can compact
the layout. They work by different principles. On the one hand, in-
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creasing thc results in the layout with looser alignment (e.g., Fig. 10G).
Users can still analyze those sessions with small sizes. On the other
hand, increasing ths results in the layout of Fig. 5A or D, where fewer
sessions are displayed (Fig. 10B).

8.4 Running Time Analysis

Recall that users may need to refine the layout, e.g., for less clutter,
fewer small patterns, or more aligned patterns. We report the running
times of four backend modules (evolution pattern detection, ordering,
aligning, and positioning) to clarify the fluency of user interaction when
refining the layout. The experiments were performed on a desktop run-
ning Ubuntu 20.04 with Intel Core i7 3.70GHz CPU, and 16 GB RAM.
The detection and aligning modules are accelerated via Multiprocessing
with 12 pools. Recall that determining correlation does not require high
efficiency since the results are cached in advance in the backend.

Detection and Ordering. Users interact with these two modules
when adjusting thd and thr. We report the running times under different
thd and thr (Fig. 10H). Fig. 10H (left) and (right) are the run times of
pattern detection and ordering, respectively. With the increasing of thd

and decreasing of thr, these two modules consume more time because
more pairs of ST series are considered correlated. The total running
time in the loosest case in Fig. 10H is 12 seconds.

Aligning and Positioning. Users interact with these two modules
when adjusting ths and thc. The running time of the aligning mod-
ule depends on the number of sessions the module needs to process
(Fig. 10C). With a larger ths, fewer sessions are left and this module
runs faster. The running time of the positioning module mainly depends
on the number of aligned session pairs. Intuitively, aligned pairs are the
constraints of the positioning process. The sweeping process is more
likely to return backward if there were more constraints. If ths and thc

are smaller, there are more aligned pairs (Fig. 10D), and the positioning
module consumes more time (Fig. 10E). The aligning and positioning
modules in our experiments consume no more than 10 seconds.

Generally, the backend can respond to users within seconds, so users
can easily tune the layout and obtain an ideal one for the dataset with
448 ST series and 184 time slices.

9 DISCUSSION AND CONCLUSION

Lessons. We have two lessons. First, interactive layout refining is
useful. There are many possibilities for the visual layout of large-scale
data. An ideal layout for the proposed visualization is hard to determine
automatically. Users may have personalized analysis interests that are
hard to quantify for automated optimization. In GeoChron, users are
able to interactively refine the layout according to their needs, making
a trade-off between information completeness and readability. In this
way, the smoothness of layout adjustment needs to be guaranteed.

Second, multilevel visualization is suitable for large-scale data.
GeoChron adopts the two-level visualization in a compactly laid-out
Storyline such that the Storyline becomes applicable to large-scale ST
series. We suggest that the multilevel strategy [12, 18, 21, 34] could be
the first choice to improve the scalability of big data analysis.

B th_s

th_s

th_s = 3

th_c = 3

th_s = 3

th_c = 7

Number of sessions

E

Run time of positioning (ms)

th_s

th_c 8907

2034

Run time of aligning (ms)

D

4887

1057

Number of aligned session pairs

th_s

th_c

C

2598

769

Average height over all time slices (px)

A
th_s

th_c

G

F

3087 659

Run time of detection and ordering (ms)

th_d 9062 6113

th_rH

Fig. 10: Quantitative experiment results. (A) Average height over all time
slices with different thc and ths. (B) Number of sessions left and (C) run
times of aligning with different ths. (D) Number of aligned session pairs
and (E) run times of positioning with different combinations of thc and ths.
(F) Snapshot when thc = 3 and ths = 3. (G) Snapshot when thc = 7 and
ths = 3. (H) Run times of detection (left) and ordering (right) with different
combinations of thd and thr.

Generalizability. GeoChron can be applied to various kinds of data
in addition to geo-spatial time series. First, visualizing cross-domain
geo-spatial time series can reveal in-depth knowledge. For example, air
quality is oftentimes correlated to temperature or traffic conditions [61].
To accommodate potential heterogeneity, the correlation modeling
method should be replaced with one suitable for heterogeneous data.

Second, if using general spatial relationships, GeoChron is poten-
tially applicable for general spatial time series [26,29,58]. For example,
in a coal-fired power plant, sensors have a logical relationship to each
other depending on where they are located in the workflow [29].

Limitations and Future Work. Our study has two limitations. First,
GeoChron may take up a lot of horizontal space if there are too many
time slices, requiring the user to scroll a lot horizontally. Although
this issue can be potentially solved by increasing the size of slices, it
may reduce the granularity and result in information loss. Besides,
GeoChron may take up a lot of vertical space when the number of ST
series increases. Although we allow users to refine and compress the
layout, small but important patterns may be hidden in this way. In the
future, we plan to study level-of-detail rendering to support larger scale
data [8], for example, by abstracting the representation further [73].

Second, one ST series can be in multiple patterns. To reflect the
situation, the curve should be split into multiple sessions. Yet, the
splitting curve may exacerbate visual clutter. Addressing such an issue
needs further studies of the layout algorithm and visualization.

GeoChron can also be further improved as follows. The algorithm
can be improved to adaptively identify the timestamps when the corre-
lation relations change, and obtain reasonable time slices. Query and
more pattern mining methods can be incorporated. Then, GeoChron
highlights query or mining results to facilitate ST series exploration.

Conclusion. This paper presents GeoChron, an effective visualiza-
tion for large-scale ST series. We formulate the problem of visualizing
large-scale ST series as an evolution pattern visualization problem that
Storyline techniques can solve well. To apply Storyline techniques,
GeoChron includes a mining framework for extracting evolution pat-
terns from ST series and a two-level visualization mechanism for im-
proved visual scalability. As a result, GeoChron enables pattern-aware
and narrative-preserving visualization of large-scale ST series.



ACKNOWLEDGMENTS

The work was supported by National Key R&D Program of China
(2022YFE0137800) and NSFC (U22A2032), and the Collaborative
Innovation Center of Artificial Intelligence by MOE and Zhejiang
Provincial Government (ZJU).

REFERENCES

[1] S. R. Aghabozorgi, A. S. Shirkhorshidi, and Y. W. Teh. Time-series

clustering - A decade review. Information System, 53:16±38, 2015. doi:

10.1016/j.is.2015.04.007 2

[2] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of

time-oriented data, vol. 4. Springer, 2011. 2

[3] G. L. Andrienko, N. V. Andrienko, J. Dykes, S. I. Fabrikant, and M. Wa-

chowicz. Geovisualization of dynamics, movement and change: Key

issues and developing approaches in visualization research. Information

Visualization, 7(3-4):173±180, 2008. doi: 10.1057/ivs.2008.23 2

[4] B. Bach, C. Shi, N. Heulot, T. M. Madhyastha, T. J. Grabowski, and

P. Dragicevic. Time curves: Folding time to visualize patterns of temporal

evolution in data. IEEE Transactions on Visualization and Computer

Graphics, 22(1):559±568, 2016. doi: 10.1109/TVCG.2015.2467851 2

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast

unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment, 2008(10):P10008, oct 2008. doi: 10.
1088/1742-5468/2008/10/P10008 4

[6] G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, and

S. Skiadopoulos. Visual exploration of geolocated time series with hybrid

indexing. Big Data Research, 15:12±28, 2019. doi: 10.1016/j.bdr.2019.02.
001 2

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book

Company, 2001. 4, 5

[8] Z. Deng, S. Chen, X. Xie, G. Sun, M. Xu, D. Weng, and Y. Wu. Multi-

level visual analysis of aggregate geo-networks. IEEE Transactions on

Visualization and Computer Graphics, pp. 1±16, 2022. Early Access. doi:

10.1109/TVCG.2022.3229953 9

[9] Z. Deng, D. Weng, J. Chen, R. Liu, Z. Wang, J. Bao, Y. Zheng, and Y. Wu.

AirVis: Visual analytics of air pollution propagation. IEEE Transactions

on Visualization and Computer Graphics, 26(1):800±810, 2020. doi: 10.
1109/TVCG.2019.2934670 1, 2, 3

[10] Z. Deng, D. Weng, Y. Liang, J. Bao, Y. Zheng, T. Schreck, M. Xu, and

Y. Wu. Visual cascade analytics of large-scale spatiotemporal data. IEEE

Transactions on Visualization and Computer Graphics, 28(6):2486±2499,

2022. doi: 10.1109/TVCG.2021.3071387 1, 2, 3, 5, 7

[11] Z. Deng, D. Weng, S. Liu, Y. Tian, M. Xu, and Y. Wu. A survey of urban

visual analytics: Advances and future directions. Computational Visual

Media, 9(1):3±39, 2023. doi: 10.1007/s41095-022-0275-7 2

[12] Z. Deng, D. Weng, and Y. Wu. You are experienced: Interactive tour

planning with crowdsourcing tour data from web. Journal of Visualization,

26(2):385±401, 2023. doi: 10.1007/s12650-022-00884-1 9

[13] Z. Deng, D. Weng, X. Xie, J. Bao, Y. Zheng, M. Xu, W. Chen, and Y. Wu.

Compass: Towards better causal analysis of urban time series. IEEE

Transactions on Visualization and Computer Graphics, 28(1):1051±1061,

2022. doi: 10.1109/TVCG.2021.3114875 1, 2, 3, 7

[14] Y. Dong, I. Oppermann, J. Liang, X. Yuan, and V. N. Quang. User-centered

visual explorer of in-process comparison in spatiotemporal space. Journal

of Visualization, 26(2):403±421, 2023. doi: 10.1007/s12650-022-00882-3 2

[15] M. Evers, K. Huesmann, and L. Linsen. Uncertainty-aware visualization

of regional time series correlation in spatio-temporal ensembles. Computer

Graphics Forum, 40(3):519±530, 2021. doi: 10.1111/cgf.14326 1

[16] H. Guo, M. Liu, B. Yang, Y. Sun, H. Qu, and L. Shi. Rankfirst: Visual

analysis for factor investment by ranking stock timeseries. IEEE Transac-

tions on Visualization and Computer Graphics, 2022. doi: 10.1109/TVCG.
2022.3209414 2

[17] G. Hulstein, V. P. Araya, and A. Bezerianos. Geo-Storylines: Integrating

maps into storyline visualizations. IEEE Transactions on Visualization

and Computer Graphics, 29(1):994±1004, 2023. doi: 10.1109/TVCG.2022.
3209480 2, 3

[18] P. Karnick, D. Cline, S. Jeschke, A. Razdan, and P. Wonka. Route vi-

sualization using detail lenses. IEEE Transactions on Visualization and

Computer Graphics, 16(2):235±247, 2010. doi: 10.1109/TVCG.2009.65 9

[19] P. Köthur, M. Sips, J. Kuhlmann, and D. Dransch. Visualization of geospa-

tial time series from environmental modeling output. In Proceedings of

Eurographics Conference on Visualization (Short Papers). Eurographics

Association, 2012. doi: 10.2312/PE/EuroVisShort/EuroVisShort2012/115-119 1,

2

[20] P. Köthur, M. Sips, A. Unger, J. Kuhlmann, and D. Dransch. Interactive

visual summaries for detection and assessment of spatiotemporal patterns

in geospatial time series. Information Visualization, 13(3):283±298, 2014.

doi: 10.1177/1473871613481692 2

[21] F. Lekschas, M. Behrisch, B. Bach, P. Kerpedjiev, N. Gehlenborg, and

H. Pfister. Pattern-driven navigation in 2d multiscale visualizations with

scalable insets. IEEE Transactions on Visualization and Computer Graph-

ics, 26(1):611±621, 2020. doi: 10.1109/TVCG.2019.2934555 9

[22] C. Li, G. Baciu, Y. Wang, J. Chen, and C. Wang. DDLVis: Real-time

visual query of spatiotemporal data distribution via density dictionary

learning. IEEE Transactions on Visualization and Computer Graphics,

28(1):1062±1072, 2022. doi: 10.1109/TVCG.2021.3114762 2

[23] J. Li, S. Chen, K. Zhang, G. L. Andrienko, and N. V. Andrienko. COPE:

Interactive exploration of co-occurrence patterns in spatial time series.

IEEE Transactions on Visualization and Computer Graphics, 25(8):2554±

2567, 2019. doi: 10.1109/TVCG.2018.2851227 1, 2, 3

[24] J. Li, K. Zhang, and Z. Meng. Vismate: Interactive visual analysis of

station-based observation data on climate changes. In Proceedings of

IEEE Conference on Visual Analytics Science and Technology, pp. 133±

142, 2014. doi: 10.1109/VAST.2014.7042489 1, 2

[25] X. Li, Y. Cheng, G. Cong, and L. Chen. Discovering pollution sources

and propagation patterns in urban area. In Proceedings of ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp.

1863±1872, 2017. doi: 10.1145/3097983.3098090 2

[26] Y. Li, X. Li, S. Shen, L. Zeng, R. Liu, Q. Zheng, J. Feng, and S. Chen.

DTBVis: An interactive visual comparison system for digital twin brain

and human brain. Visual Informatics, 7(2):41±53, 2023. doi: 10.1016/j.
visinf.2023.02.002 9

[27] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng. GeoMAN: Multi-level

attention networks for geo-sensory time series prediction. In Proceedings

of International Joint Conference on Artificial Intelligence, pp. 3428±3434,

2018. doi: 10.24963/ijcai.2018/476 1

[28] D. Liu, P. Xu, and L. Ren. TPFlow: Progressive partition and multidi-

mensional pattern extraction for large-scale spatio-temporal data analysis.

IEEE Transactions on Visualization and Computer Graphics, 25(1):1±11,

2019. doi: 10.1109/TVCG.2018.2865018 2

[29] S. Liu, D. Weng, Y. Tian, Z. Deng, H. Xu, X. Zhu, H. Yin, X. Zhan,

and Y. Wu. ECoalVis: Visual analysis of control strategies in coal-fired

power plants. IEEE Transactions on Visualization and Computer Graphics,

29(1):1091±1101, 2023. doi: 10.1109/TVCG.2022.3209430 2, 9

[30] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. StoryFlow: Tracking the

evolution of stories. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2436±2445, 2013. doi: 10.1109/TVCG.2013.196 1, 2, 3, 4,

5

[31] Y. Liu, J. Wu, and D. Yu. Characterizing spatiotemporal patterns of

air pollution in china: A multiscale landscape approach. Ecological

Indicators, 76:344±356, 2017. doi: 10.1016/j.ecolind.2017.01.027 2

[32] X. Lu, Y. Xu, G. Li, Y. Chen, and G. Shan. MVST-SciVis: Narrative

visualization and analysis of compound events in scientific data. Journal

of Visualization, 26(3):687±703, 2023. doi: 10.1007/s12650-022-00893-0 2

[33] S. Ma and C. Zhu. Extreme cold wave over east asia in january 2016: A

possible response to the larger internal atmospheric variability induced

by arctic warming. Journal of Climate, 32(4):1203 ± 1216, 2019. doi: 10.
1175/JCLI-D-18-0234.1 7

[34] J. Magallanes, T. Stone, P. D. Morris, S. Mason, S. Wood, and M. Villa-

Uriol. Sequen-c: A multilevel overview of temporal event sequences. IEEE

Transactions on Visualization and Computer Graphics, 28(1):901±911,

2022. doi: 10.1109/TVCG.2021.3114868 9

[35] A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and W. Huang.

A correlative analysis process in a visual analytics environment. In Pro-

ceedings of IEEE Conference on Visual Analytics Science and Technology,

pp. 33±42, 2012. doi: 10.1109/VAST.2012.6400491 2

[36] T. W. Meshesha, J. Wang, and N. D. Melaku. Modelling spatiotemporal

patterns of water quality and its impacts on aquatic ecosystem in the cold

climate region of alberta, canada. Journal of Hydrology, 587:124952,

2020. doi: 10.1016/j.jhydrol.2020.124952 2

[37] M. Monmonier. Strategies for the visualization of geographic time-series

data. Cartographica: The International Journal for Geographic Infor-

mation and Geovisualization, 27:30±45, 10 1990. doi: 10.3138/U558-H737
-6577-8U31 1

[38] F. K. Muthoni, V. O. Odongo, J. Ochieng, E. M. Mugalavai, S. K. Mourice,

I. Hoesche-Zeledon, M. Mwila, and M. Bekunda. Long-term spatial-

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1057/ivs.2008.23
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.bdr.2019.02.001
https://doi.org/10.1016/j.bdr.2019.02.001
https://doi.org/10.1109/TVCG.2022.3229953
https://doi.org/10.1109/TVCG.2022.3229953
https://doi.org/10.1109/TVCG.2019.2934670
https://doi.org/10.1109/TVCG.2019.2934670
https://doi.org/10.1109/TVCG.2021.3071387
https://doi.org/10.1007/s41095-022-0275-7
https://doi.org/10.1007/s12650-022-00884-1
https://doi.org/10.1109/TVCG.2021.3114875
https://doi.org/10.1007/s12650-022-00882-3
https://doi.org/10.1111/cgf.14326
https://doi.org/10.1109/TVCG.2022.3209414
https://doi.org/10.1109/TVCG.2022.3209414
https://doi.org/10.1109/TVCG.2022.3209480
https://doi.org/10.1109/TVCG.2022.3209480
https://doi.org/10.1109/TVCG.2009.65
https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/115-119
https://doi.org/10.1177/1473871613481692
https://doi.org/10.1109/TVCG.2019.2934555
https://doi.org/10.1109/TVCG.2021.3114762
https://doi.org/10.1109/TVCG.2018.2851227
https://doi.org/10.1109/VAST.2014.7042489
https://doi.org/10.1145/3097983.3098090
https://doi.org/10.1016/j.visinf.2023.02.002
https://doi.org/10.1016/j.visinf.2023.02.002
https://doi.org/10.24963/ijcai.2018/476
https://doi.org/10.1109/TVCG.2018.2865018
https://doi.org/10.1109/TVCG.2022.3209430
https://doi.org/10.1109/TVCG.2013.196
https://doi.org/10.1016/j.ecolind.2017.01.027
https://doi.org/10.1007/s12650-022-00893-0
https://doi.org/10.1175/JCLI-D-18-0234.1
https://doi.org/10.1175/JCLI-D-18-0234.1
https://doi.org/10.1109/TVCG.2021.3114868
https://doi.org/10.1109/VAST.2012.6400491
https://doi.org/10.1016/j.jhydrol.2020.124952
https://doi.org/10.3138/U558-H737-6577-8U31
https://doi.org/10.3138/U558-H737-6577-8U31


temporal trends and variability of rainfall over eastern and southern africa.

Theoretical and Applied Climatology, 137(3):1869±1882, 2019. doi: 10.
1007/s00704-018-2712-1 2

[39] M. Ogawa and K. Ma. Software evolution storylines. In Proceedings

of ACM Symposium on Software Visualization, pp. 35±42, 2010. doi: 10.
1145/1879211.1879219 2

[40] P. Patel, E. J. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive

time series databases. In Proceedings of IEEE International Conference

on Data Mining, pp. 370±377, 2002. doi: 10.1109/ICDM.2002.1183925 2

[41] Y. Qin, J. Li, K. Gong, Z. Wu, M. Chen, M. Qin, L. Huang, and J. Hu.

Double high pollution events in the yangtze river delta from 2015 to 2019:

Characteristics, trends, and meteorological situations. Science of The Total

Environment, 792:148349, 2021. doi: 10.1016/j.scitotenv.2021.148349 2

[42] H. Qu, W. Chan, A. Xu, K. Chung, A. K. Lau, and P. Guo. Visual

analysis of the air pollution problem in hong kong. IEEE Transactions on

Visualization and Computer Graphics, 13(6):1408±1415, 2007. doi: 10.
1109/TVCG.2007.70523 1

[43] N. Rodrigues, R. Netzel, K. R. Ullah, M. Burch, A. Schultz, B. Burger,

and D. Weiskopf. Visualization of time series data with spatial context:

Communicating the energy production of power plants. In Proceedings

of International Symposium on Visual Information Communication and

Interaction, pp. 37±44. ACM, 2017. doi: 10.1145/3105971.3105982 1, 2

[44] Y. Shi, C. Bryan, S. Bhamidipati, Y. Zhao, Y. Zhang, and K. Ma. Meet-

ingVis: Visual narratives to assist in recalling meeting context and content.

IEEE Transactions on Visualization and Computer Graphics, 24(6):1918±

1929, 2018. doi: 10.1109/TVCG.2018.2816203 2

[45] G. Shirato, N. V. Andrienko, and G. L. Andrienko. Identifying, exploring,

and interpreting time series shapes in multivariate time intervals. Visual

Informatics, 7(1):77±91, 2023. doi: 10.1016/j.visinf.2023.01.001 2

[46] J. Spinoni, M. Lakatos, T. Szentimrey, Z. Bihari, S. Szalai, J. Vogt, and

T. Antofie. Heat and cold waves trends in the carpathian region from 1961

to 2010. International Journal of Climatology, 35(14):4197±4209, 2015.

doi: 10.1002/joc.4279 1, 2

[47] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding

of hierarchical system structures. IEEE Transactions on Systems, Man,

and Cybernetics, 11(2):109±125, 1981. doi: 10.1109/TSMC.1981.4308636 4

[48] G. Sun, R. Liang, H. Qu, and Y. Wu. Embedding spatio-temporal infor-

mation into maps by route-zooming. IEEE Transactions on Visualization

and Computer Graphics, 23(5):1506±1519, 2017. doi: 10.1109/TVCG.2016.
2535234 2

[49] Y. Tanahashi, C. Hsueh, and K. Ma. An efficient framework for generat-

ing storyline visualizations from streaming data. IEEE Transactions on

Visualization and Computer Graphics, 21(6):730±742, 2015. 4

[50] Y. Tanahashi and K. Ma. Design considerations for optimizing storyline vi-

sualizations. IEEE Transactions on Visualization and Computer Graphics,

18(12):2679±2688, 2012. doi: 10.1109/TVCG.2012.212 1, 2

[51] T. Tang, R. Li, X. Wu, S. Liu, J. Knittel, S. Koch, L. Yu, P. Ren, T. Ertl,

and Y. Wu. PlotThread: Creating expressive storyline visualizations using

reinforcement learning. IEEE Transactions on Visualization and Computer

Graphics, 27(2):294±303, 2021. doi: 10.1109/TVCG.2020.3030467 2, 4

[52] T. Tang, S. Rubab, J. Lai, W. Cui, L. Yu, and Y. Wu. iStoryline: Effective

convergence to hand-drawn storylines. IEEE Transactions on Visualization

and Computer Graphics, 25(1):769±778, 2019. doi: 10.1109/TVCG.2018.
2864899 2, 4

[53] T. Tang, Y. Wu, Y. Wu, L. Yu, and Y. Li. VideoModerator: A risk-

aware framework for multimodal video moderation in e-commerce. IEEE

Transactions on Visualization and Computer Graphics, 28(1):846±856,

2022. doi: 10.1109/TVCG.2021.3114781 2, 4

[54] S. Thakur and A. J. Hanson. A 3D visualization of multiple time series on

maps. In Proceedings of IEEE International Conference on Information

Visualisation, pp. 336±343, 2010. doi: 10.1109/IV.2010.54 1, 2

[55] The World Air Quality Index project. New York, USA Air Pollution: Real-

time Air Quality index. https://aqicn.org/city/usa/newyork/.

Last accessed on 28.03.2023. 3

[56] V. A. Traag. Faster unfolding of communities: Speeding up the louvain

algorithm. Physical Review E, 92(3):032801, 2015. doi: 10.1103/PhysRevE.
92.032801 4

[57] E. Wall, M. Agnihotri, L. E. Matzen, K. Divis, M. Haass, A. Endert, and

J. T. Stasko. A heuristic approach to value-driven evaluation of visual-

izations. IEEE Transactions on Visualization and Computer Graphics,

25(1):491±500, 2019. doi: 10.1109/TVCG.2018.2865146 8

[58] Y. Wang, Z. Zhu, L. Wang, G. Sun, and R. Liang. Visualization and

visual analysis of multimedia data in manufacturing: A survey. Visusal

Informatics, 6(4):12±21, 2022. doi: 10.1016/j.visinf.2022.09.001 9

[59] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. van de Wetering. Visual traffic

jam analysis based on trajectory data. IEEE Transactions on Visualization

and Computer Graphics, 19(12):2159±2168, 2013. doi: 10.1109/TVCG.2013
.228 2

[60] X. Wu, C. Cheng, R. Zurita-Milla, and C. Song. An overview of clustering

methods for geo-referenced time series: from one-way clustering to co-

and tri-clustering. International Journal of Geographical Information

Science, 34(9):1822±1848, 2020. doi: 10.1080/13658816.2020.1726922 2

[61] Y. Wu, D. Weng, Z. Deng, J. Bao, M. Xu, Z. Wang, Y. Zheng, Z. Ding, and

W. Chen. Towards better detection and analysis of massive spatiotemporal

co-occurrence patterns. IEEE Transactions on Intelligent Transportation

Systems, 22(6):3387±3402, 2021. doi: 10.1109/TITS.2020.2983226 2, 9

[62] S. Yagi, T. Itoh, and M. Takatsuka. A layout technique for storyline-based

visualization of consecutive numerical time-varying data. In Proceedings

of International Symposium on Visual Information Communication and

Interaction, pp. 156±157. ACM, 2015. doi: 10.1145/2801040.2801067 2, 3,

5

[63] C. Yang, Z. Zhang, Z. Fan, R. Jiang, Q. Chen, X. Song, and R. Shibasaki.

EpiMob: Interactive visual analytics of citywide human mobility restric-

tions for epidemic control. IEEE Transactions on Visualization and Com-

puter Graphics, 2022. doi: 10.1109/TVCG.2022.3165385 2

[64] W.-F. Ye, Z.-Y. Ma, and X.-Z. Ha. Spatial-temporal patterns of pm2.5

concentrations for 338 chinese cities. Science of The Total Environment,

631-632:524±533, 2018. doi: 10.1016/j.scitotenv.2018.03.057 2

[65] X. Yi, Z. Duan, R. Li, J. Zhang, T. Li, and Y. Zheng. Predicting fine-

grained air quality based on deep neural networks. IEEE Transactions on

Big Data, 8(5):1326±1339, 2022. doi: 10.1109/TBDATA.2020.3047078 1

[66] L. Ying, X. Shu, D. Deng, Y. Yang, T. Tang, L. Yu, and Y. Wu. MetaGlyph:

Automatic generation of metaphoric glyph-based visualization. IEEE

Transactions on Visualization and Computer Graphics, 29(1):331±341,

2023. doi: 10.1109/TVCG.2022.3209447 2

[67] L. Ying, T. Tang, Y. Luo, L. Shen, X. Xie, L. Yu, and Y. Wu. GlyphCreator:

Towards example-based automatic generation of circular glyphs. IEEE

Transactions on Visualization and Computer Graphics, 28(1):400±410,

2022. doi: 10.1109/TVCG.2021.3114877 2

[68] Y. Yu, D. Kruyff, J. Jiao, T. Becker, and M. Behrisch. PSEUDo: Interactive

pattern search in multivariate time series with locality-sensitive hashing

and relevance feedback. IEEE Transactions on Visualization and Computer

Graphics, 29(1):33±42, 2023. doi: 10.1109/TVCG.2022.3209431 2

[69] X. Yue, J. Bai, Q. Liu, Y. Tang, A. Puri, K. Li, and H. Qu. sportfolio:

Stratified visual analysis of stock portfolios. IEEE Transactions on Visual-

ization and Computer Graphics, 26(1):601±610, 2020. doi: 10.1109/TVCG.
2019.2934660 2

[70] G. G. Zanabria, J. Silveira, J. Poco, A. Paiva, M. B. Nery, C. T. Silva,

S. Adorno, and L. G. Nonato. CrimAnalyzer: Understanding crime

patterns in são paulo. IEEE Transactions on Visualization and Computer

Graphics, 27(4):2313±2328, 2021. doi: 10.1109/TVCG.2019.2947515 1

[71] W. Zeng, C. Fu, S. M. Arisona, S. Schubiger, R. Burkhard, and K. Ma.

Visualizing the relationship between human mobility and points of interest.

IEEE Transactions on Intelligent Transportation Systems, 18(8):2271±

2284, 2017. doi: 10.1109/TITS.2016.2639320 2

[72] W. Zhao, G. Wang, Z. Wang, L. Liu, X. Wei, and Y. Wu. A uncertainty

visual analytics approach for bus travel time. Visual Informatics, 6(4):1±11,

2022. doi: 10.1016/j.visinf.2022.06.002 2

[73] Y. Zhao, L. Ge, H. Xie, G. Bai, Z. Zhang, Q. Wei, Y. Lin, Y. Liu, and

F. Zhou. ASTF: Visual abstractions of time-varying patterns in radio

signals. IEEE Transactions on Visualization and Computer Graphics,

29(1):214±224, 2023. doi: 10.1109/TVCG.2022.3209469 2, 9

[74] Y. Zhao, Y. Wang, J. Zhang, C. Fu, M. Xu, and D. Moritz. KD-Box: Line-

segment-based KD-tree for interactive exploration of large-scale time-

series data. IEEE Transactions on Visualization and Computer Graphics,

28(1):890±900, 2022. doi: 10.1109/TVCG.2021.3114865 2, 5

[75] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. Forecasting

fine-grained air quality based on big data. In Proceedings of ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp.

2267±2276, 2015. doi: 10.1145/2783258.2788573 2

[76] J. Y. Zhu, C. Zhang, H. Zhang, S. Zhi, V. O. K. Li, J. Han, and Y. Zheng.

pg-Causality: Identifying spatiotemporal causal pathways for air pollutants

with urban big data. IEEE Transactions on Big Data, 4(4):571±585, 2018.

doi: 10.1109/TBDATA.2017.2723899 1, 2

https://doi.org/10.1007/s00704-018-2712-1
https://doi.org/10.1007/s00704-018-2712-1
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1109/ICDM.2002.1183925
https://doi.org/10.1016/j.scitotenv.2021.148349
https://doi.org/10.1109/TVCG.2007.70523
https://doi.org/10.1109/TVCG.2007.70523
https://doi.org/10.1145/3105971.3105982
https://doi.org/10.1109/TVCG.2018.2816203
https://doi.org/10.1016/j.visinf.2023.01.001
https://doi.org/10.1002/joc.4279
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TVCG.2016.2535234
https://doi.org/10.1109/TVCG.2016.2535234
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2020.3030467
https://doi.org/10.1109/TVCG.2018.2864899
https://doi.org/10.1109/TVCG.2018.2864899
https://doi.org/10.1109/TVCG.2021.3114781
https://doi.org/10.1109/IV.2010.54
https://aqicn.org/city/usa/newyork/
https://doi.org/10.1103/PhysRevE.92.032801
https://doi.org/10.1103/PhysRevE.92.032801
https://doi.org/10.1109/TVCG.2018.2865146
https://doi.org/10.1016/j.visinf.2022.09.001
https://doi.org/10.1109/TVCG.2013.228
https://doi.org/10.1109/TVCG.2013.228
https://doi.org/10.1080/13658816.2020.1726922
https://doi.org/10.1109/TITS.2020.2983226
https://doi.org/10.1145/2801040.2801067
https://doi.org/10.1109/TVCG.2022.3165385
https://doi.org/10.1016/j.scitotenv.2018.03.057
https://doi.org/10.1109/TBDATA.2020.3047078
https://doi.org/10.1109/TVCG.2022.3209447
https://doi.org/10.1109/TVCG.2021.3114877
https://doi.org/10.1109/TVCG.2022.3209431
https://doi.org/10.1109/TVCG.2019.2934660
https://doi.org/10.1109/TVCG.2019.2934660
https://doi.org/10.1109/TVCG.2019.2947515
https://doi.org/10.1109/TITS.2016.2639320
https://doi.org/10.1016/j.visinf.2022.06.002
https://doi.org/10.1109/TVCG.2022.3209469
https://doi.org/10.1109/TVCG.2021.3114865
https://doi.org/10.1145/2783258.2788573
https://doi.org/10.1109/TBDATA.2017.2723899

	Introduction
	Related Work 
	Overview
	Term Definition
	Background and Research Problem
	Storyline-based Solution

	Pattern Mining 
	Original Storyline Layout Method
	Visual Design 
	Design Goals
	Layout Refinement
	Two-level Visualization
	Tracking Overall Evolution Patterns
	Drilling Down Into Evolution Patterns


	Implementation
	Evaluation 
	Case Studies 
	Air Quality in China 
	Temperature in China

	Informal User Study
	Ablation Study and Parameter Analysis 
	Running Time Analysis 

	Discussion and Conclusion

