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Fig. 1. The user interface of ECoalVis. A) The filter view reveals the time series of key sensors and allows users to fuzzy query control
strategies. B) The graph view reveals the spatial propagation of control strategy impact across components, units and sensors. C) The
strategy view depicts the temporal cascading of control strategy impact, visualizing the topology of the strategy and the time-lag-aligned
time series. D) The detail view allows users to search for sensors and perform time series operations to find insights from the raw data.

Abstract— Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors
affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and
evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot
well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of
the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic
sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c)
time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain
experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies
of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage
scenarios on a real-world historical dataset and received positive feedback from experts.
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1 INTRODUCTION

Coal is one of the world’s largest energy sources, contributing over
one-third of the electricity generated in 2019 [45]. However, generating
electricity from fossil fuels, such as coal, has serious implications
for the environment [41] and human health [12]. To alleviate such
implications before clean energy is deployed, the efficiency of the
existing coal-fired power plants needs to be improved, such that less
coal is consumed and pollutant emissions are reduced [64].

The control strategy is one of the major factors affecting the effi-
ciency of coal-fired power plants [22, 67]. To regulate a coal-fired
power plant, experts largely follow certain control strategies to achieve
desired goals, like increasing burning rates [25]. A control strategy
comprises a sequence of control valve adjustments and state changes,
which are monitored by thousands of sensors distributed across a power
plant. For example, a control strategy can be formulated as follows:
turn up the burner, and then increase the opening of the water valves
after temperature rise is observed. However, due to the complex and
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dynamic environment in the power plants, it is hard to determine the
effect such a control strategy has in such an environment.

Traditionally, control strategies are evaluated manually by experts
with specialized monitoring and tuning software [11, 47], where the
collected sensor data is organized into several dashboards to visualize
the real-time states of the power plant. However, not only the trial-and-
error approach is too risky for operating power plants on the fly, but
also the latent propagation of the impact of a control strategy is hard to
capture manually due to the scale of the system. With the development
of simulation techniques, many data-driven approaches [17,48,54] were
proposed to predict the outcome of control strategies by modeling and
simulating a power plant. However, most of these approaches are based
on limited datasets and strong assumptions. For example, the power
plant system should be in a steady state. Moreover, these approaches
mainly focus on physical simulation rather than interactive reasoning.
For example, they cannot be used to backtrack efficiency fluctuations
and identify the responsible control strategies.

The lack of a comprehensive approach for evaluating the control
strategies of coal-fired power plants motivates us to explore the potential
solutions driven by visual analytics. Based on massive historical sensor
data, a visual analytics solution can assist experts in both forward
(determine the impact of control strategies) and backward (identify the
control strategies responsible for abnormal states) analyses, facilitating
the understanding of the complex interactions between different control
strategies and the power plant systems. However, developing such a
solution poses the following three challenges:

Interactive extraction of control strategies from large-scale dy-
namic sensor data. The first step towards the effective analysis of
control strategies is to identify and extract these strategies from the
historical data. However, such a task can be challenging since a coal-
fired power plant comprises numerous units and thousands of sensors,
generating large-scale time series data constantly. An efficient search of
control strategies and their impact should be implemented to accelerate
the analysis procedure. Moreover, the diversity and dynamics in control
strategies require the interactive integration of domain knowledge, such
that experts can quickly find the strategies of their interest.

Intuitive visual representation of the cascading impact among
the sensors in a complex power plant system. The impact of control
strategies must be intuitively visualized to assist experts in analyzing
how such impact propagates across the power plant system and eventu-
ally affects the power generation efficiency. However, a power plant
system has numerous components and multiple levels of hierarchies.
Due to the complexity and scale of the system structure, it is difficult
to reveal the cascading impact of control strategies among components,
units, and sensors in a systematic and comprehensible way. Specifically,
producing a hierarchical and semantic graph layout with low visual
clutter to facilitate understanding is both important and challenging.

Time-lag-aware analysis of the impact of control strategies on
electricity generation efficiency. Time lags can be observed when
the impact of control strategies propagates from one sensor to another.
Such time lags are crucial to the analysis of control strategies because
the order and timing of control valve adjustments heavily depend on
these time lags. However, capturing and analyzing these time lags
is challenging since the environment inside a power plant is highly
dynamic. Moreover, the temporal analysis of these time lags should
be tightly integrated with the spatial analysis of cascading impact,
revealing how the manipulations of control valves are coordinated
together to eventually affect the power generation efficiency.

To address these challenges, we propose ECoalVis, a novel inter-
active system for experts to visually analyze the control strategies of
coal-fired power plants. For the first challenge, we designed an inter-
active query interface that allows users to describe the relationships
among multiple time series and proposed a new method that fuzzy
searches and extracts the desired control strategies based on the user
input. For the second challenge, we employed a dual-mode hierarchical
graph visualization, allowing users to switch between context- and
relationship-oriented layouts and inspect the cascading impact of con-
trol strategies at different levels of hierarchy. For the third challenge,
we proposed a spatiotemporal control strategy view that integrates the
propagation of the impact among sensors with time-lag-aligned time-
series visualization, and an iterative approach was adopted to empower

users to verify and correct the extracted strategies based on the time
lags. The contributions of this study are summarized as follows:

• We formulated a framework of two types of analysis and charac-
terized the user requirements for the comprehensive analysis of
the control strategies of coal-fired power plants.

• We designed an interactive approach that assists users in speci-
fying time series relationships and retrieving the desired control
strategies with a fuzzy-matching model.

• We developed ECoalVis, a novel visual analytics system that
integrates a set of tailored visualizations to effectively help users
query, analyze and evaluate control strategies.

• We evaluated ECoalVis with two usage scenarios on historical
data and received positive feedback from domain experts.

2 RELATED WORK

This section presents relevant studies on analyzing control strategies
of coal-fired power plants, visual analytics for industries, and event
pattern recognition techniques.

2.1 Control Strategies Analysis of Coal-fired Power Plants
There have been many relevant methods for analyzing, evaluating, and
optimizing control strategies of coal-fired power plants. These methods
can be categorized into two types: experience-driven and data-driven.

Many experience-driven approaches rely on specialized software
to continuously collect data from coal-fired power plant sensors and
display the values in simple dashboard panels (e.g., Fei et al. [20]).
When experts analyze control strategies, they will first check them
through some important states, such as Li et al. [35] check energy
efficiency and Zheng et al. [69] check gas emission. They search for
these state values from multiple sensor panels and then evaluate them
based on their experience (e.g., Fan et al. [19]).

With the development of data analysis techniques, many data-driven
approaches have been applied to the control strategy analysis and eval-
uation of coal-fired power plants. One type of data-driven technique
is modeling coal-fired power plants using expert software (e.g., Li
et al. [36]). Some of the modeling studies concentrate on evaluating
the subunits of coal-fired power plants. For example, Yin et al. [65]
model the coal mill and Chandrasekhara et al. [6] model the boiler.
The other focus on the whole power plant and evaluate it globally. For
example, Njoku et al. [40] adopt the multi-criteria evaluation. Besides,
many machine learning algorithms, such as ANN-GA [50], Bayesian
network [68], Reinforcement Learning [22], and Multiple Linear Re-
gression [48], are also applied to model coal-fired power plants.

However, these methods do not combine human intelligence well
with machine computing power. Experience-driven methods are poorly
scalable and time-consuming. Data-driven methods use limited data
instead of actual data and model coal-fired power plants under strict
constraints, such as running in a steady state.

2.2 Visual Analytics for Industries
Existing visual analytics systems help users better understand industrial
data and cover a wide range of industries [14, 60, 70]. The energy
industry is closely related to our work, so we investigated many visual
analytics systems designed for it. Höllt et al. [28,29] and CasCADe [30]
model specific industrial scenarios in 3D because contextual informa-
tion is very important for the energy industry, but this also makes the
aforementioned systems only applicable to the corresponding scenarios.
We also investigated other energy industrial visual analytics systems for
high-dimensional hierarchical time series data. Xiao et al. [62] propose
a visual analysis method for the optimization of transformer substa-
tions. Maljovec et al. [38] simulate and optimize the nuclear reactor
process with visual analytics. However, to the best of our knowledge,
no existing visual analytics systems are designed for high-dimensional
hierarchical time-series data that can support time-lag analysis. This is
why specially designed visual analytics systems are required to analyze
the complex dynamics of coal-fired power plants.

Additionally, as the time-lag-aware analysis is vital for coal-fired
power plants, we surveyed visualization techniques designed for tempo-
ral features. Line charts are frequently used to depict linear time (e.g.,
PlanningVis [49] and Zhou et al. [71]). For periodic time, Wu et al. [61]
use calendar charts, and ViDX [63] uses a radial graph. Besides, the
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Fig. 2. Concept explanation and task abstraction. A) In the forward analysis, the user specifies a partial control strategy (A3), where each control
event (A2) is discretely obtained from the time series (A1). B) In the backward analysis, the user observes anomaly (B2) from the sensor state time
series and looks for the responsible control strategy (C). C) A complete control strategy. Obtained from different known conditions of the forward and
backward analysis, for example, C1 corresponds to A2, and C2 corresponds to B2.

Gantt graph [31] is efficient for displaying time intervals. Since time
series in the coal-fired power plants are all linear, we employed the
line chart design. There are also numerous techniques for revealing the
relationships between time series. ViDX [63] and OrderMonitor [51]
adopt the marey graph. The parallel coordinates plot [44] can be used
similarly. However, these techniques are incapable of presenting tempo-
ral trends and time lags. VisCas [13] assists in analyzing the cascading
propagation of spatiotemporal events but does not consider time lags.
Compass [16] is designed to analyze causality and time lags but only
helps with ego-networks relationships. Therefore, we designed the
graph and strategy views to simultaneously visualize the relationships,
propagations, and time lags of time series in coal-fired power plants.

2.3 Event Pattern Recognition Techniques
According to the survey of Guo et al. [26], event pattern recognition
techniques are categorized based on four dimensions: data scales,
automated sequence analysis, visual representations, and interactions.
The method used by ECoalVis belongs to the category Filter or Query
under the dimension of the interaction. There are many Filter or Query
methods, but none can solve the problem of ECoalVis.

Many auto-mining methods like Frequence [44] extract the frequent
event patterns, but in coal-fired power plants, there may be some crit-
ical but infrequent strategies. There are also query-based methods.
Sequence Synopsis [9] supports filtering similar events. Fails et al. [18]
propose a visual system to query event sequences but cannot help users
specify the relationships between time series.

Some query approaches assist users in specifying the relationships
between events. Krause et al. [32] propose a method to query the
branching event sequences. MAQUI [33] allows mining for recur-
sive event sequences. However, they only match consecutive event
sequences and cannot perform fuzzy matching. Activitree [52] uses a
graph-based design to query related events, but the complex relation-
ships between sensors will cause many crossings. The work of Lee et
al. [34] is also inspirational but cannot calculate the time lag.

Therefore, we designed an interactive method to support specifying
time-series relationships and fuzzy matching.

3 DATA AND TASK ABSTRACTION

This section presents the background of our study, the description of
relevant data and concepts, and the summarized user requirements.

3.1 Background
To characterize the workflow of analyzing control strategies of coal-
fired power plants, we collaborated closely with four domain experts,
EA, EB, EC, and ED, in the past year. EA and EB are researchers from
an intelligent city research team, and they have decades of experience
in developing data-driven approaches for the energy sector. EC has
worked as a senior engineer at a coal-fired power plant for more than
three years and is extremely knowledgeable about power plant opera-
tion. We also invited ED, a Ph.D. candidate in energy science, to join
the collaboration, such that we could leverage her expertise to better
understand the rationales behind the diverse control strategies.

Through the collaboration, we learned that different control strate-
gies have different effects on the states of a coal-fired power plant.

These effects generally form cascading relationships, that is, one effect
occurs due to the executed control strategy and/or other relevant effects,
and these effects may eventually lead to changes in efficiency. However,
due to the complexity of the power plant environment, linking causes
with effects or vice versa in such an environment is a challenging yet
valuable task. On the one hand, the engineers at the power plant need
to know what effects a control strategy will have on the power plant
states to reduce decision errors and facilitate operating confidence. On
the other hand, the engineers need to determine the causes of the ab-
normal power plant states like sudden efficiency drops, such that the
engineers can revert incorrect control strategies and take mitigation
actions. Therefore, we summarized two types of analyses based on the
direction of the analysis between causes and effects:

Forward analysis (causes → effects). The experts need to deter-
mine the cascading impact of diverse control strategies across different
sensors and eventually on the efficiency of the power plant. To perform
such a task, they want to see what happens if some control valves
are manipulated under certain states. Moreover, subsequent control
actions can be discovered with this type of analysis, answering ques-
tions like “what should be adjusted next after fan A is increased to
accept more oxygen?” Therefore, the proposed system should help the
experts formulate their queries into a partial control strategy, where the
relationships among time series changes can be described with chain
reactions. Based on such a partial control strategy, the system should
efficiently find all matching control strategies and present the impact of
these strategies for further analysis.

Backward analysis (effects → causes). Inappropriate control
strategies may lead to the power plant’s anomalous behaviors, which
are reflected in the sensor time series. Hence, the experts would like
to find anomalies in several critical sensors and identify the control
strategies responsible for these anomalies. Questions can be asked
like “The log shows that the negative furnace pressure was abnormal;
why is this happening, and which control strategies have problems?”
The insights obtained from the backward analysis can help the experts
discover which actions in the control strategies lead to the anomalies
and revise the control strategies to avoid similar anomalies in future
operations. To support this type of analysis, the proposed system needs
to enable the experts to inspect and select a time range of interest,
and the responsible control strategy that comprises a series of control
actions and state changes should be extracted and visualized.

In both directions of analysis, the experts are concerned about the
paths of impact propagation among the sensors and the time lags of each
propagation, such that control strategies can be constructed or refined
based on this information. For example, after the burner is turned up, the
experts would like to know how long they should wait to increase water
cooling. Hence, time lags should be visualized along with key control
actions and state changes to facilitate informed decision-making.

3.2 Data and Concepts
A historical dataset collected from a coal-fired power plant was used to
conduct this study. The dataset comprises two types of data: a) Struc-
ture data describes the hierarchical structure of a coal-fired power
plant, which comprises three levels: components, units, and sensors.
These components can be further divided into three stages, coal pul-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209430

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 20,2022 at 07:40:45 UTC from IEEE Xplore.  Restrictions apply. 



verization, burning, and steam circulation, based on the workflow of
generating electricity from coal. b) Sensor data comprises a set of time
series collected from sensors in a coal-fired power plant. The sensors
not only record the states (such as temperatures) inside the power plant,
but also track the control feedback (such as valve openings). The time
series for each sensor is a sequence of samples 1 minute apart.

Sensor events can be extracted from the sensor data (Sect. 4.1.1).
Each sensor event is characterized by the corresponding sensor and
one of the following temporal patterns, rising, falling or stable. We
also categorize these events by the types of sensor, namely, the control
feedback (control events) or state sensors (state events).

We further formalize a control strategy (Fig. 2C) as a directed
acyclic graph, where each node is a sensor event, and each edge implies
the propagation of impact. Additionally, each edge is associated with a
time duration, indicating the time lags in the propagation.

3.3 Requirements Analysis
We followed the nine-stage design study methodology framework [46]
to iteratively discover the user requirements by reviewing the related lit-
erature, obtain domain insights from expert interviews, and discussing
the design ideas with the experts. Finally, we conclude five user re-
quirements as follows. In particular, R1 and R2 are for the forward and
backward analyses, respectively, and R3-5 are for the evaluation of the
control strategies in both analyses.

R1: Extract the impact of control strategies with time series
queries. In the forward analysis, the experts need to find the impact of
certain control strategies. Hence, the proposed system should support
the intuitive query with partial control strategies that describe the time-
series changes in the sensors of concern (rising, falling, or stable)
and the temporal relationships between these changes (the order of
propagation). Thereafter, the matching control strategies and their
impact should be efficiently extracted from the historical data, and the
similarities and differences among these strategies should be visualized
to help the experts select a strategy of interest for further analysis.

R2: Identify responsible control strategies for anomalies in im-
portant sensors. In the backward analysis, the experts need to identify
anomalies (e.g., sudden rises or drops) of important sensors, such as
the efficiency and pollutant emissions, which should be visualized in
the proposed system. To find the causes of the anomalies, the experts
should be able to select the period of time that comprises an anomaly,
and the system should efficiently search through the historical data and
extract a responsible control strategy constituted by multiple cascading
sensor events, including the selected anomaly. Further analysis of this
control strategy can help determine the cause of this anomaly.

R3: Explore the spatial propagation of control strategy impact.
Visualizing the spatial propagation of impact is critical to the analy-
sis of control strategies, where the experts can discover the involved
components, units and sensors and identify the propagation paths. We
initially adopt a relationship-oriented layout, visualizing the propaga-
tion on a distorted schema of the power plant to reflect the strengths of
the relationships among the involved sensors. The experts appreciate
the intuitiveness of this design, but they also request to add a context-
oriented layout without schema distortion, so they can interpret the
distribution of the involved sensors faster in a more familiar context.

R4: Obtain the temporal cascading of control strategy impact.
Analyzing how long it takes to propagate impact from one sensor to an-
other in a control strategy can help the experts understand the strategy’s
execution flow, such that more control actions can be incorporated into
the strategy with confidence. The proposed system should be able to
infer such time lags and visualize them along with the topology of the
control strategy. This visualization can also reveal that some sensors
may be missing from the extracted control strategy based on large time
lags. Hence, the system should allow the experts to add or remove
sensors from the topology to iteratively guide the extraction model.

R5: Inspect the details of the sensor time series. The experts
request to see raw sensor data when analyzing control strategies. For
example, they may search for a specific sensor to confirm whether or
not it has changed during the execution of a control strategy. A query
interface and time-series visualization should be presented to support
such analyses. Moreover, the system should also enable the experts
to perform various operations on time series, such as aggregating the

sensors of the same type by sum or average, or computing the difference
between the sensors on left and right sides. This utilizes the experts in
discovering insights from the in-depth analysis of raw sensor data.

4 ECOALVIS

To meet the user requirements summarized in Sect. 3.3, we proposed
ECoalVis, a novel interactive system for experts to visually analyze the
control strategies of coal-fired power plants. During the design proce-
dure of ECoalVis, all the domain experts were also tightly integrated
in the discussion of design alternatives. An overview of the system
is shown in Fig. 3. ECoalVis comprises three modules, namely, data
storage, backend, and frontend. The data storage module (Fig. 3A)
maintains the structure and sensor data and builds spatial and temporal
indexes for accelerating data queries. The backend module (Fig. 3B)
can extract control strategies from the sensor time series with two types
of query corresponding to the forward and backward analyses, and iter-
ative refinement of control strategies is also supported in this module.
The frontend module (Fig. 3C) consists of four views, namely, the filter,
graph, strategy, and detail views. These four views combined facilitate
the intuitive query and in-depth analysis of the control strategies.

This section presents the detailed implementation of ECoalVis. We
first introduce the algorithm in the backend that extracts the desired con-
trol strategies, and then describe the visual design of the four views in
the frontend to show how they can support the comprehensive analysis.

4.1 Time-Lag-Aware Extraction of Control Strategies
To extract control strategies from the sensor data, we propose a time-lag-
aware model to answer two types of query, the forward and backward
queries, which provide support for the forward (R1) and backward
(R2) analyses, respectively. For the forward queries, the input is a
partial strategy that comprises a sequence of sensor events arranged
according to their order of occurrence. As the complete control strategy
is complex, there will be errors or omissions in the user’s query input.
The model should fuzzy match the given partial strategy with the sensor
events and find the matched strategies and their cascading impact.
For the backward queries, the input is a time range of an important
sensor (such as the efficiency) that contains a fluctuation. The model
need to expand from the given sensor to find the correlated sensor
events, obtaining a complete control strategy that is responsible for the
fluctuation. We discuss how the model handles these two types of query
in the following sections.

4.1.1 Forward Queries
The forward queries help users obtain possible control strategies and
their cascading impact by specifying partial strategies (R1). A partial
control strategy U consists of a sequence of L sensor event groups
U = {U1,U2, ...,UL}. Each sensor event group Ui comprises a set of
sensor events Ui, j, each identified by a sensor ID and a time series
pattern. Since the direct specification of a time series pattern is difficult,
we allow users to constraining the temporal trend of a sensor event
by choosing an option from rising, falling and stable. Moreover, to
maintain the flexibility of the queries, the model performs fuzzy match-
ing based on the given partial strategy, allowing the absence of some
sensor events in the matched strategies, such that diverse results can
be obtained. This is inspired by string matching methods usually used
in search engines, where ”fuzzy search means the process of finding
strings that approximately match a given string“ [58]. We regard a
partial strategy as a subsequence and a complete control strategy as a
string. The goal of the queries is to find a set of the control strategies
that fuzzy match the given partial one, along with the time lags of
impact propagation and a matching score for each matched strategy. To
answer the queries, the model employs a three-fold approach:

Discretizing time series. First, we discretize sensor time series into
events sequences (Fig. 3D). The increases and decreases in the time
series will lead to peaks. There are relationships between the start/end
time point and the extremum. For example, as shown in Fig. 3F, we
circled the first minimum in the decreasing series. It corresponds to the
end time point in the event. As the ternary search [10] efficiently finds
extremum, we employ it to perform such discretization. However, since
the ternary search only works for single peaks, we set a sliding window
to address this limitation. Besides, we also fine-tuned a threshold to
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Fig. 3. The system overview of ECoalVis. ECoalVis comprises three parts, namely, data storage (A), backend (B), frontend (C). A) Data are
processed and indexed in the data storage. B) The backend comprises the algorithms for the forward (B1) and backward analyses (B2). C) The
frontend combines the filter, graph, strategy, and detail views to support extracting and analyzing control strategies.

reduce the impact of time series jitters. After this step, a sequence of
sensor events is obtained from the time series of each sensor.

Aligning sensor events. The sensor events extracted in the first step
are not aligned because the discretization is performed individually for
each sensor. Hence, in this step, we split the extracted sensor events
to align the start and end time of these events as illustrated in Fig. 3G.
The resulting time series can be represented with a sequence of sensor
event groups S = {S1,S2, ...,ST }, where T is the number of events in
each time series, and Si is a sensor event group where all events in the
group can be seen as occurred simultaneously.

Matching partial strategy. In this step, we match the given partial
control strategy U with the extracted sequence of sensor event groups
S (Fig. 3H). Such matching can be formulated as the longest common
subsequence problem, and thus the dynamic programming approach [3,
27] can be employed to solve this problem. To adapt this approach for
fuzzy matching, we assume two groups Si and U j match if there is at
least one identical event in both groups. We also encode the temporal
trend of a sensor event with a bit set of length 3 (each bit corresponds to
a time series pattern in rising, falling and stable), such that fast matching
can be achieved by intersecting two sensor events, i.e., Si,k ∧U j,k 6= 0
indicates a positive match for sensor k. Hence, we can modify the
recursive equation in the dynamic programming approach as follows:

Fi, j =

{
Fi−1, j−1 +1, ∃k Si,k ∧U j,k 6= 0,
max(Fi−1, j,Fi, j−1), otherwise,

where the state matrix Fi, j semantically indicates the maximum num-
ber of the matching groups before Ui and S j. We also maintain the
matching sensor events Gi, j between the groups Si and U j, such that
we can backtrack the dynamic programming procedure to produce the
sequences of the matching events as the output of this step. Further-
more, we compute a match score for each resulting sequence based on
the intuition that matching more groups and more events is preferred.
We denote the numbers of matching groups and events for a resulting
sequence as F and G, and the match score is calculated as F +G/N,
where N is the total number of sensor events.

After the sequences of the matching sensor events are determined,
we expand these sequences into control strategies by launching the
breadth-first search procedure similar to the backward queries from
each sensor event towards both directions (ahead and behind), obtaining
a complete control strategy and its cascading impact for each sequence.

4.1.2 Backward Queries

The backward queries help users search for the control strategies respon-
sible for the anomalies the users observed (R2). Our approach is based
on the cross-correlation analysis studies [43]. If the impact of sensor A
propagates to sensor B after t time steps, then we will see that the time
series of A is highly correlates with that of B after A and B are aligned
by the time lag t (Fig. 3E3). Therefore, we employ a time-lag-aware
breadth-first search approach to extract control strategies.

For the backward queries, users will specify a time range on a sensor
time series that contains the anomaly. We place this sensor as the
last one in the extracted control strategy and attempt to expand from
this sensor to complete the control strategy. The detailed steps of the
breadth-first search are described as follows:

1. The specified sensor is pushed into the search queue (Fig. 3E1).
2. The first sensor P in the search queue is taken (Fig. 3E2).
3. For each sensor Q in the reverse order of the power generation

workflow, we offset the time series of Q by t minutes for each t
between 1 and 15 minutes, which is the predefined upper limit
for the time lags, and compute the Pearson coefficients c between
the time series of P and Q during the specified time period. The
Pearson coefficient [42] is a number between -1 and 1, indicating
the linear correlation (Fig. 3E3).

4. If c exceeds 0.8, which is a threshold obtained by trial-and-error,
we will assume that P and Q are correlated and add Q into the
search queue and the control strategy (Fig. 3E4).

5. The search terminates if the search queue is empty or the duration
of the control strategy has exceeded 2 hours; otherwise, the search
will return to step 2 and continue (Fig. 3E5).

After the search completes, the extracted control strategy will com-
prise all sensors that are relevant to the changes in the specified sensor.
The time complexity of the search is O(N2M), where N is the number
of sensors, and M is the length of time range. Such a procedure is also
applicable to the iterative editing of the control strategies (Fig. 3E6).
Specifically, for expanding a leaf sensor in a control strategy, we can
start the search from the specified sensor; and for inserting additional
sensors between two connected sensors, we can start the search from
the latter sensor and terminate once the former sensor is reached.

4.2 Filter View

The first step of the analysis is to filter interesting control strategies.
As users have different query requirements, we design two types of
interaction in the filter view to accommodate the forward and backward
analyses, respectively. Therefore, users can quickly identify the desired
control strategies. For the forward analysis (R1), we design an input
panel to help specify user-desired patterns and a ranking panel to select
a control strategy. For the backward analysis (R2), a line plot is used
to visualize the time series of important sensors and help users select a
time range that comprises anomalies.

Input panel. User-desired patterns are actually a partial control
strategy according to Sect. 3. A partial control strategy is a multi-
sensor event sequence. As every event has many properties, we design
an event glyph (Fig. 4E) with user-concerned details [4, 66]. The glyph
comprises four parts: a) the trend shapes (Fig. 4E3) depict the changes,
including rising, falling, and stable; b) the sensor type is encoded by
semantic icons (Fig. 4E1) to facilitate identifiability; c) the color hues
encode four discrete stages (Fig. 4E1); d) the annotation before the
sensor name (Fig. 4E2) distinguishes control (V) and state events (S).
The color hues and icons are consistent throughout the system.
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Fig. 4. The design of filter view. A-B) Grouped line charts visualize the
time series of important sensors. C-D) Menu buttons help edit the input
panel. E) The event glyph visualizes the stage, type, name, and trend of
a sensor. F) The different grouped shapes represent possible trends of
a sensor. G) A table-based ranking view compares and evaluates the
alternative control strategies in the list mode and group mode.

To help users specify the relationship between events, we design
a multi-column view. According to the discussion with the experts,
we find that users focus on co-occurrence and precedence. Therefore,
we split the input panel into multiple columns. Events in the same
and different columns correspond to co-occurrence and precedence,
respectively. To reduce the interaction burden, we offer three additional
changes via grouping (not rising, not falling, and unstable as shown
in Fig. 4F) and allow users to import and export files (Fig. 4C).

Ranking panel (Fig. 4G). The ranking panel has two modes: list
and group mode. The list mode aims to help compare and select possi-
ble control strategies with user-desired patterns (Fig. 4G2). Inspired
by LineUp [24], we design a table-based view for easy ranking and
comparison. For sequence-level comparison, each row shows an alter-
native control strategy, and the pie chart reveals the matching score. For
column-level comparison, each column contains events matching the
above input panel, and the light blue bar below encodes the proportion
of matches in this column. For event-level comparison, the colored
rectangles in the column display match details. The group mode aims
to visualize summaries of different patterns. A summary row (Fig. 4G1)
is added to the top of each group of alternative control strategies. At
the front is the count of alternatives in this group. The opacity of the
colored rectangle indicates the occurrence rate of the corresponding
event. Besides, the support value of the link is shown in Fig. 4G1.
We calculate the support value using the formula SV = N/M. In the
formula, N means the times this control strategy happens, and M means
the number of all related control strategies. The support value indicates
how frequently a control strategy occurs.

Line chart (Fig. 4A). A line chart depicts the time series of impor-
tant sensors such as power generation efficiency, NOx emissions, and
furnace pressure. Users can switch among important sensors via the
tabs (Fig. 4B). We allow users to set a threshold for the first derivative
because they are concerned with the time range in which there is a
significant change. Opacity encoding helps highlight the critical areas
that change fast. Brushing a time range on the line chart will invoke a
backward query, which extracts the responsible strategy.

Justification. For the input panel, there are many event pattern
recognition techniques. We discuss them in Sect. 2 in detail. Besides,
we tried graph-based design initially, as it is efficient for showing
relationships [8]. We designed event glyphs and used them as nodes.
However, specifying complex time series relationships with the node-
link diagram can be rather cumbersome and may lead to many link
crossings. Therefore, we simplified the design into a multi-column
view. For the event glyph, we encode stages with color hues, as it is
the second effective channel to encode category [7, 39]. We encode
sensor types by icons because there are so many of them. For the
ranking panel, we are inspired by LineUp [24] and the comparison
panel design from Wongsuphasawat et al. [59]. The table view helps
users compare alternatives on column- and event-level quickly. As the
compact technique is always used to group similar patterns, we improve
the table view through it to make the aggregation pattern clear [1].

Fig. 5. The visual design of the graph view. A) This reveals the
relationship-oriented view. B) This reveals the context-oriented view.
C) It illustrates the three steps of the hierarchical force-directed layout
algorithm. D) It introduces the design of sensors, units, and components.

4.3 Graph View
The graph view adopts a dual-mode design to provide both spatial and
contextual information about the coal-fired power plant (R3). Analyz-
ing the relationship between sensors in control strategies helps gain
insights into the power plants, so we design a relationship-oriented view.
This view highlights the spatial propagation and correlation among the
components, units, and sensors. In addition, depicting the complex
hierarchical structure and actual spatial location is also very important,
so we design a context-oriented view.

In both modes, we employ hierarchical encodings for different levels.
At the sensor level, the hollow circles encode the control feedback
sensors, while the solid ones encode the state sensors (Fig. 5D). At
the unit and component levels, we adopt colored shapes with different
opacity. Moreover, sensors that have changed significantly during the
user-selected time range will be enlarged. After clicking the sensor, its
impact propagation links will appear.

Relationship-oriented visualization (Fig. 5B). Initially, we found
mismatches between actual spatial location and data relation. For ex-
ample, as shown in (Fig. 5B), the fan (Fig. 5B2) located far from the
coal mill (Fig. 5B1) and furnace (Fig. 5B2) significantly impacts them
through the wind. In this situation, the actual position will lead to
ambiguity, and users may feel that the correlation between the fan and
the coal mill is weak. Therefore, inspired by the multi-level force-
directed graph algorithm [53], we adopt a node-link diagram-based
design. However, it will take a long time to compute the layout be-
cause of the large scale of sensors. Therefore, the layout algorithm is
improved into a hierarchical one to minimize the search space. First
(Fig. 5C1), we compute the force-directed graph layout for the units and
then fix their position. Next (Fig. 5C2), the sensor-level computation is
constrained by the units, so the search space quickly converges. Then
(Fig. 5C3), to distinguish components, the convex hull calculated from
common tangents of units displays component-level layout.

Context-oriented visualization (Fig. 5A). When users focus on the
context, such as workflow and actual location, the relationship-oriented
layout is not intuitive enough [15,55]. This is because domain engineers
are more familiar with abstract workflow diagrams (Fig. 5B) than node-
link diagrams. Therefore, we simplify the power plant structure as an
abstract workflow diagram to provide a context overview.

Justification. The graph view visualizes relationships and propaga-
tion graphs, so we considered two most commonly used techniques:
matrix-based and node-link designs. The matrix design is rejected
because it is non-intuitive to track the propagation paths. As for the
node-link design, though it reduces ambiguities, the experts are unfamil-
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Fig. 6. Design choices for strategy view. A) A topology-first intergrated
diagram. B) A temporal-first intergrated diagram. C) Our current design
of topology-temporal-linked layout.

iar with it. Hence, we adopted a context-oriented diagram familiar to
experts to help them locate the critical sensors. Also, after comparing
color-, size-, and texture-based design [23], we employed the size-
texture-mixed one, which highlighted sensors most clearly (Fig. 5D).

4.4 Strategy View
The strategy view is designed for analyzing the temporal cascading
impact of control strategies (R4). There are two aspects to this analysis
task. First, in terms of temporal dimension, the user is concerned about
the exact time lag of the impact from sensor A to sensor B. In addition,
the users also want to see detailed time series. Second, in terms of
topological dimension, the user is concerned about the cascading impact
between sensors, especially the correlation and propagating direction.

Temporal visualization. A bar-based view is used to display dis-
cretely sampled time series data (Fig. 6C4). Not only the height of
each bar reveals the value, but to further highlight the trend, we also
set the opacity of the bar accordingly. The benefit of this encoding is
that it clearly depicts the time lag steps between sensors (Fig. 6C5). In
addition, the sensors with the same delay are grouped together to facili-
tate exploring patterns, such as synergistic and antagonistic adjustment.
Moreover, this view can be aligned to see overall trends and display
propagation more clearly. We use triangles on the left to mark control
sensors (Fig. 6C3), while the others are state sensors.

Topological visualization. The control strategy is shown as a node-
link diagram (Fig. 6C1), where nodes encode sensors and links encode
the cascading impact between sensors. The thickness of the edge
encodes the correlation strength, and the color hue encodes whether the
correlation is positive (yellow) or negative (pink). We place the extra
column of semantic icons next to user-specified sensors (Fig. 6C2).

Interaction. On the one hand, with many control strategies taking
place simultaneously in complex coal-fired power plants, inevitably,
false correlations will occasionally occur. On the other hand, some
sensors might be missing because of a large time lag. Hence, we
design editing interactions to assist users in obtaining the cascading
impact of the temporal control strategy. There are three types of editing
interactions, namely, insert, expand, and delete. Insert is for exploring
the missing sensors between two levels. Delete is for removing the
uninteresting or wrong sensors. Expand is for obtaining correlated
sensors with a large time lag. Users can click on the top button group
to quickly edit the control strategy (Fig. 1C1).

Justification. There are also two integrated design choices for the
strategy view, one is topology-first, and the other is temporal-first. The
topology-first design is based on a directed graph (Fig. 6A), where each

node in the graph is a time series chart that helps users inspect details
(Fig. 6A1). The edge of the directed graph reflects the correlation
(Fig. 6A2). The thickness of the edge encodes the strength, the color
hue of the edge encodes the positive and negative (cyan is positive, red
is negative), and the length of the edge reveals the time lag [2]. The
topology-first design clearly shows the cascading impact but still has
two disadvantages. First, although the time curve can reflect the relative
length of the time lag, it is still hard to compare. Second, it is hard to
evaluate it absolutely instead of relatively, as they are not aligned.

The temporal-first design is based on the bar-based chart (Fig. 6B).
Each row corresponds to the time-series data (Fig. 6B1), and the links
on the left side of the data are negatively correlated while positively on
the right side. The thickness also indicates the strength of the correla-
tion. This design reflects the time lags clearly and is easily aligned for
inspection. However, the links have many crossings (Fig. 6B3), which
clutter the cascading propagation paths. Besides, it is difficult to follow
the propagation. For example, in (Fig. 6B), if the user wants to track
the propagation from B1→B2, he needs to first follow the left link to
find the middle sensor and then follow the right link to find B2. There-
fore, we finally adopt the visual design of topology-temporal-separated
design to consider both advantages.

4.5 Detail View
To support efficient inspection of data details (R5), we provide a detail
view (Fig. 1D) to show raw data for all sensors within a specific time
range. Users can add desired sensors in the search box on the top
(Fig. 1D1). Then from top to bottom, the data details of each sensor are
shown one by one. The structure diagram on the left (Fig. 1D3) shows
the spatial position of the sensor in the coal-fired power plant, providing
context information. The line chart on the right (Fig. 1D2) shows the
time-lag-aligned time series during the selected time range. In addition,
users also need to view the aggregation patterns of multiple sensors. We
provide three aggregation interactions: sum, difference, and average
(Fig. 1D4). In this way, users can inspect the data details that may help
them confirm the conclusions drawn in the previous views.

Justification. The sensor data in coal-fired power plants is high-
dimensional temporal data. Liu et al. [37] and Wei et al. [57] surveyed
commonly used views for high-dimensional data and sensor data, in-
cluding axis-based, glyphs, pixel-oriented, hierarchy-based [5], scatter
plots [56], and animation designs. The line plot is the most efficient for
showing trends in all of the methods, so we use it.

5 IMPLEMENTATION

We employed the common front-end (React, Redux, and Type-
script) and back-end (Flask, Python, and Numpy) libraries to develop
ECoalVis. The coal-fired power plant data is stored in many excel files,
which are exported from a meta dataset. We open source ECoalVis
on Github. The data configuration and guidance are available in the
repository. https://github.com/ECoalVis/ECoalVis.

6 EVALUATION

In this section, we present two usage scenarios explored by us and
reproduced and evaluated by the experts using ECoalVis on real-world
historical datasets in the forward analysis and the backward analysis,
respectively. Then we interviewed the experts, and their feedback
demonstrated the effectiveness and usability of ECoalVis.

Dataset. The dataset contains 8 components, 17 units, and 203
sensors. It collects data from February 28, 2019, to May 8, 2019. As
the sensor records data every minute, the length of each sensor’s time
series is 100080. The time lag’s order of magnitude is 10, and the
average length of events is 11.17 minutes.

6.1 Backward: Find Causes for Efficiency Increase
In the backward analysis, the users usually observe some anomalies
and want to find a responsible control strategy.

Step 1: Filter the anomaly. After loading the dataset, the user first
explored the line plot in the filter view (Fig. 1A). The purple line reveals
the power generation efficiency, one of the most important sensors. The
user observed that the efficiency increased between 2/28 14:12 to 2/28
16:46 and then reached a stable state (Fig. 1A1). The user selected the
interval to explore the pattern.
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Fig. 7. The analysis process of obtaining effects of unbalanced burning. A) shows the user how to specify desired patterns and choose the best
match control strategy. B) displays the spatial propagation and reveals a synergistic adjustment in the desuperheater. C) depicts the cascading
impact of unbalanced burning with time lags. D) is the reasoning result of unbalanced burning. E) shows detailed evidence to support the deduction
in (D). F) and G) help to verify the conclusion.

Step 2: Explore the spatial propagation impact. After the
back-end algorithm extracted the control strategy responsible for this
anomaly, the user started analyzing it. The user was attracted by high-
lighted circles (Fig. 1B) in the graph view and clicked a valve in the
furnace to explore its impact propagation. The user found that the im-
pact propagated from furnace to cinder and finally to the efficiency (B1
→B2 →B3 in Fig. 1). The user also found that there was a highlighted
sensor in the fan (Fig. 1B4). As the fan was only in the wind circula-
tion, the user guessed that this anomaly might be related to it closely.
However, the user was unsure how and why the fan was adjusted, so
the user continued exploring more details.

Step 3: Obtain the temporal cascading impact. The user checked
the details in the strategy view. The user first edited the control strategy
to understand why the fan was adjusted (Fig. 1C2). In the editing
process, the user first expanded the fan node but got an unexpected
sensor. So, the user deleted it and then checked the time-lag-aligned
temporal view (Fig. 1C5). The user found that the fan decreased
one minute after reducing the total air volume. Then, after another
two minutes, the dampers in the furnace increased. Finally, the fly
ash carbon decreased and the efficiency increased (C2 →C3 →C4 in
Fig. 1). Based on domain knowledge, the user guessed that the reason
why the efficiency increased might be reducing excess air in the furnace.
The user needed to inspect more evidence.

Step 4: Inspection and check. The user further inspected some re-
lated sensors in the detail view, including oxygen, total air volume, and
negative furnace pressure. The user clicked the align button and found
the oxygen was stable (Fig. 1D2) while the other changed according
to the efficiency (D5 →D6 in Fig. 1). Therefore, the user confirmed
that reducing excess air while keeping oxygen could increase the effi-
ciency. Finally, the user imported events one by one into the filter view
(Fig. 1A3) and found the support value was 64%. In the end, the user
confirmed that the control strategy frequently occurred in history.

6.2 Forward: Obtain Effects of Unbalanced Burning
In the forward analysis, the users usually want to explore the possible
cascading impact after adjusting some valves.

Step 1: Specify desired patterns. The user observed the burning
in the furnace was not balanced and geared to the right from the log
history. According to his expertise, the user should adjust the water
valve on the right side to alleviate this situation. However, the user
knew little about the possible cascading effects and how long it took to
affect the efficiency. Therefore, the user edited the filter view to specify
the control strategy. The user first added the increasing event of the

right furnace temperature and then added the opening wider event of the
right-side water valves (Fig. 7A1). After the possible control strategies
were shown, the user browsed the alternatives from top to bottom as
they were sorted decreasingly by scores. The user selected the first one
because the user found a more dramatic change of efficiency in it than
that in the second one (Fig. 7A2).

Step 2: Explore the propagation. The user explored the spatial
propagation of the selected control strategy. To focus more on the
relationship and gain insights into the correlation between sensors
and components, the user used the relationship-oriented mode of the
graph view (Fig. 7B). The user clicked the highlighted circles in the
desuperheater to see the impact of water valve adjustment. The colored
links revealed that the desuperheater was negatively correlated with the
superheater (B1→B2). Then, the positive correlation spread further to
fly ash carbon (B2→B3) and finally affected efficiency (B3 →B4) in
Fig. 7B. Though the user knew the correlation between each pair of
sensors, the user still wondered about the exact time lags.

Step 3: Obtain the cascading impact. The user started to examine
the temporal cascading impact. The user first aligned the time series
data of all sensors and observed cascading patterns (C1 →C2 →C3
→C4 in Fig. 7). After the unbalanced burning appeared, the right-sided
water valve was raised within 1 minute. After another 5 minutes, the
relevant temperature was affected to decrease gradually, and finally, the
efficiency can be recovered from decreasing. The user confirmed that
the timely adjustment of the right-sided water valves could avoid the
loss diffusion of abnormal unbalanced burning with these patterns.

Step 4: Reason the control strategy and verify. However, the user
still wanted to know why unbalanced burning was caused and whether
all unbalanced burning could be treated with such a remedy. Therefore,
the user expanded the last level (Fig. 7C1) and gained the full control
strategy (Fig. 7D). The user found that four dampers were opened wider
before the unbalanced burning occurred, so the user saw their sum in
the detail view (Fig. 7E1). Besides, the user also inspected many other
sensors to verify the conclusion, such as the temperature difference
between the right and left side (Fig. 7E2). After that, the user was sure
that the dampers caused the unbalanced burning.

Step5: Evaluate the remedy control strategy. Next, the user eval-
uated the control strategy of the Abnormal Dampers →Right Side
Unbalanced Burning →Right Water Valves Increasing into the filter
view and switched to the group mode (Fig. 7F) to see aggregation
information. In the end, since the support value reached more than 75%
(Fig. 7G), the user believed that timely adjustment of the water valves
could effectively reduce the negative impact of unbalanced burning.
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6.3 Expert Interview
We conducted one-on-one structured interviews with the aforemen-
tioned four experts (EA, EB, EC, and ED). We first introduced the
basic functions of ECoalVis. Second, the experts reproduced two usage
scenarios according to prepared script. Third, they followed the think-
aloud protocol [21] and analyzed the control strategies of interest with
ECoalVis. Finally, we collected qualitative feedback from the experts
on the effectiveness, designs and interactions, and other suggestions.

Effectiveness. All experts spoke highly of ECoalVis and confirmed
that this system could be useful in analyzing the control strategies of
coal-fired power plants. EC mentioned that in the past, the control
strategies of power plants were always evaluated and judged based
on individual experience, which cost a long time to inspect multiple
sensor values. Besides, engineers could only qualitatively analyze sen-
sor correlation with traditional software, resulting in an insufficient
understanding of control strategies. ECoalVis clearly presented the cor-
relation between sensors and the time lags, facilitating further insights
and optimization of control strategies. EA told us that the time-lag
analysis was precious because it shed insight on how the programming
logic of the PID inside the power plants could be optimized. EB thought
ECoalVis could assist engineers in making informed adjustments: “This
system can help engineers understand the subsequent impact and make
changes in time.” ED suggested that ECoalVis had great potential in
teaching new engineers, helping them learn diverse control strategies.

Designs and interactions. Overall, the experts agreed that
ECoalVis was easy to use, and the interactions were convenient and
smooth. EA liked the design and interaction of the filter view very
much because it could help him “quickly explore the impact of any
combination of control adjustments”. EB said the results retrieved in
the filter view were well organized. EB and EC both praised the respon-
siveness of the system as they had a good experience in querying with
the filter view. ED mentioned that the graph view could quickly help her
analyze the impact of various units and sensors and their relationships.
She told us that “relationship-oriented graph layout well captures some
features like collaborative adjustments.” EB, EC, and ED all agreed
that the time-lag-aware design of the strategy view was very intuitive
and efficient. ED emphasized that the correspondence between the
impact propagation of control strategies and the resulting efficiency
could be established with this design, so “In the future, ECoalVis will
greatly help us build economic power plants.”

Improvement. Experts also made constructive suggestions for our
system. EB recommended that adding bookmarks to the filter view
could help users record query history for future verification. EC sug-
gested that users shall be able to jump between the same sensors in the
graph and strategy views to further associate the spatial information
of the sensors with the propagation topology. ED commented that the
sensors in the graph view could be grouped at a finer granularity, espe-
cially for larger units like furnaces. It would be easier to understand if
the locations of the sensors were similar to those in the real world. We
have optimized the system based on these suggestions.

7 DISCUSSION

In this section, we discuss the implications, lessons learned, and the
limitations and future work of ECoalVis.

Implications. In this paper, we propose ECoalVis, a visual analytics
system for analyzing control strategies of coal-fired power plants. We
discuss the implications of ECoalVis from the following aspects.

Analytical framework. We identified two types of analyses based
on the directions between causes and effects and further derived five
requirements. Although these analyses were summarized from the
domain-specific observations, we argue that such a framework can be
adapted to other correlation analysis applications where either causes or
effects are unknown and need to be determined. These applications can
benefit from such a framework in characterizing similar requirements.

Techniques. We designed an interactive query interface that inte-
grated a tailored model to search for multiple time series based on their
relationships. The interface supports users to specify the relationships
among time series and present the query results with interpretable con-
fidence. Such an interface can also be applied to other scenarios where
the relationships among time series are the focus of the analysis, like
querying the diffusion patterns of air pollution based on sensor data.

Applicability. We presented two usage scenarios on the real-world
coal-fired power plant data. These usage scenarios preliminarily show
the potential of ECoalVis in helping users find relevant control strategies
based on the preferred analysis approach and gaining unprecedented
insights into the spatial and temporal characteristics of these strategies.
The findings delivered by these scenarios were confirmed by the experts
and may guide the future operation and optimization of the power plant.

Lessons learned. We present two design lessons during the devel-
opment of ECoalVis. First, usability and flexibility should be carefully
balanced while developing domain-specific visual analytics systems.
During the design of the filter view, we initially adopted a graph-based
query interface. However, the experts struggled with this query inter-
face, finding it hard to understand because they had never authored
such graphs. Therefore, we simplified the query interface by adopting a
sequence-based design, where users can arrange sensor events linearly
based on the order of occurrence. Despite the loss of certain flexibility,
the experts well perceive this design. Second, familiarity matters in the
presentation of spatial information. Initially, we wanted to emphasize
the impact propagation process in the graph view, thereby designing a
hierarchical force-directed layout based on the relationship strengths
among the sensors. Despite the clear trend of propagation captured
by the layout, the experts failed to locate components and units since
the underlying schema of the power plant was distorted. Hence, we
developed another mode in the graph view to preserve the schematic
positions and the shapes of the components and units.

Limitations and future work. Three limitations are observed in
the proposed system. First, the filter view does not offer automatic
guidance on what can be specified as the query constraints. Inexperi-
enced users may find it hard to initiate the analysis if they do not know
which sensors to query with. A possible mixed-initiative solution is to
integrate an anomaly detection model that highlights interesting control
strategies, which requires further studies on identifying abnormal strate-
gies. Hence, we resorted to the on-demand query approach and left the
mixed-initiative ones as a part of future work. Second, the schema of
the power plant in the graph view is not presented in 3D. The experts
told us in the interview that a 3D schema may better support them in the
analysis because it creates a sense of presence that helps them navigate.
However, integrating such a schema is a challenging task, requiring
a realistic 3D model of the power plant and a new graph layout to
facilitate the immersive propagation analysis in the 3D environment,
so we decide to leave it as a future direction. Third, the evaluation of
ECoalVis was limited to a small number of expert users. We would like
to deploy ECoalVis in the production and collect more use cases and
feedback in the future to further validate its effectiveness.

In the future, we will also connect ECoalVis to the streaming data
from power plants and adapt it for in-situ analyses, such that control
strategies can be analyzed and optimized in real-time. This opens up
new avenues for analyzing control strategies, and decision-making
modules can be included to facilitate informed selection. We will also
try to simplify ECoalVis by adding guidance and integrating machine
learning models that detect anomalies automatically.

8 CONCLUSION

This study proposes ECoalVis, a novel interactive system for experts
to visually analyze the control strategies of coal-fired power plants.
To address three identified challenges, we collaborated with domain
experts and summarized five requirements based on two types of analy-
ses. We developed ECoalVis to suit the experts’ needs, integrating a
series of well-designed visualization with efficient models to support
the in-depth analysis of control strategies. The effectiveness of the
system was evaluated with two usage scenarios on a real-world dataset
along with expert interviews. In the future, we plan to address the
limitations observed in the proposed approach and adapt the system for
in-situ analyses with streaming data.
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