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Abstract Planning an ideal tour schedule is a tedious process, where the attractions to visit and the order of
visits need to be carefully determined. In this paper, we propose a novel interactive approach for tour
planning. We first extract prior tourists’ experiences from the crowdsourcing tour data on the Web using
frequent substring mining. We then design and implement a planning tool equipped with interactive
visualizations, enabling users to learn the extracted experiences and plan their own tours. Our approach is
evaluated with two usage scenarios on real-world tour data in two cities. Compared with previous methods,
our approach strikes a balance between efficiency and reliability. On the one hand, we support the inter-
active manipulation of attraction sequence (i.e., multiple attractions at a time), thereby ensuring efficiency.
On the other hand, we keep humans in the loop of the tour planning process via interactive visualizations.
This paper shows the value of tour data published by tourists on the Web for personalized tour planning.

Keywords Interactive tour planning � Geospatial data visualization � Mobility visualization

1 Introduction

Tourism has become an important and popular way of pastime and entertainment in people’s modern life.
Tour planning is a challenging task. To determine an ideal tour schedule (i.e., the attractions to visit and the
order of visits), tourists or practitioners (e.g., tourist guides) need to consider attractions’ popularities, travel
experiences (Nomiyama et al. 2018), visit times, etc.

Many interactive tools have been developed to assist in planning tours. The strategies of these tools can
be categorized into end-to-end (Yahi et al. 2015; Kurata and Hara 2014; Lim et al. 2016; Inspirock 2022)
and step-by-step (Nomiyama et al. 2018; Travelchime Inc 2022; Tripadvisor Inc 2022). The end-to-end
strategy (Fig. 1A) allows users to specify their individual preferences, such as the tour duration, tightness,
and preferred POI categories (e.g., shopping). Then, automatic optimization algorithms recommend can-
didate tours that satisfy users’ preferences as much as possible. In this way, users can quickly obtain
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candidate tours via simple interactions. However, users still need to evaluate the recommended routes
because they cannot always accurately externalize their preferences and fully trust the black-box recom-
mendation, which leads to a reliability issue. The step-by-step strategy (Fig. 1C) presents attractions
together with their context and supports users to construct tours by adding the attractions of their interests
iteratively and manually. During the process, users have to carefully evaluate each added attraction and its
arrangement by investigating contextual information. Compared with the end-to-end strategy, it is more
flexible and reliable but indeed a tedious and time-consuming process, leading to an efficiency issue.

The aforementioned limitations observed in the existing tools motivate us to propose a new interactive
approach for tour planning to feature a balance between efficiency and reliability.

The dilemma is that reliable tour planning inevitably demands a time-consuming investigation of
attractions with respect to their contents (e.g., what to enjoy) and spatiotemporal relationships with each
other (e.g., what is the next attraction). Fortunately, with the rise of tourism and the development of the
Internet, more and more tourists voluntarily share their travelogues with itineraries on tourism web forums.
Specifically, an itinerary records several attraction sequences (denoted as tours) that a tourist or a group of
tourists visits on different days. We call these attraction sequences crowdsourcing tour data. They provide an
unprecedented opportunity for tourists or practitioners to learn the previous tourists’ experiences and then
plan new tours efficiently and reliably, rather than starting from knowing nothing.

This study attempts to propose a novel approach for tour planning by leveraging the tour data publicly
shared on the web with interactive visualizations. Notably, our approach enables users to visually analyze
the popular attraction subsequences (denoted as subtour) from these tour data and interactively manipulate
them for tour planning (Fig. 1B).

However, two major challenges are posed. (1) Scalable and clear presentation of crowdsourcing tour
data. Many popular subtours, such as attractions ‘‘A ! B ! C’’, attractions ‘‘B! C’’, and attractions ‘‘C !
B ! D,’’ exist among the crowdsourcing tour data. They may overlap with each other or even contain the
opposite order of attractions. Users need to determine their favorite by exploring these popular subtours and
conducting analyses, which demands a scalable and intuitive visualization. (2) Interactive planning of an
ideal tour. The interactions of the previous methods (whether it is end-to-end or step-by-step) focus on
individual attractions. In contrast, our tool allows users to plan their ideal tours based on the (sub) tours of
others, which have not been studied before. Thus, new interactive methods are required to support flexible
manipulation of the tours users are interested in.

In this study, we first gather user requirements that describe how users want to plan ideal tours using
crowdsourcing tour data on the Web. Based on the gathered requirements, we propose a novel tool planning
framework. We also accordingly develop cT3, a Crowdsourcing Tour-based Tour planning Tool. cT3 strikes
a balance between end-to-end and step-by-step strategies by introducing subtours. cT3 addresses the
aforementioned challenges as follows. (1) To address the first challenge, we tightly combine a computa-
tional method and visualizations. In particular, we identify popular subtours using a frequent substring
mining technique and present them intuitively and compactly in a scalable manner based on their inherent
parent–children relationships. (2) To address the second challenge, we propose a set of useful interactions to
assist users in aligning, comparing, and connecting (sub) tours, thereby enabling them to derive their ideal
tours interactively. The subtour concept supports planning multiple orderly attractions at once and the
visualizations keep human in the loop, thereby ensuring efficiency while pursuing reliability. Finally, we
present two usage scenarios in two different cities, which show the effectiveness and usability of our
approach. In sum, our contributions are as follows:

• A study showing the value of tour data on the Web for tour planning, which will promote tourism
forums or related websites;

• A tool planning framework and its implementation, a novel interactive tour planning tool, cT3. To the
best of our knowledge, it is the first attempt that enables users to learn the prior experiences of other
tourists and plan their ideal tours efficiently and reliably;

• Two example usage scenarios on real-world data in two cities.

2 Related work

This section presents related studies in three categories: tour planning tool, tour data visualization, and urban
visual analytics.
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2.1 Tool planning tool

We focus on planning tours within a few days, not the next attraction (Contractor et al. 2021; Wang et al.
2020) or the next city (Dadoun et al. 2019). Many interactive tools have been developed to assist tourists in
planning their tours and can be divided into two categories based on the adopted strategies: end-to-end and
step-by-step.

The end-to-end tools build upon user interfaces and optimization algorithms. User interfaces allow
tourists to specify their individual preferences as constraints. Then, tour planning problems are formulated
as optimization problems to recommend tours that satisfy tourists’ preferences as much as possible. Many
algorithms (Lim et al. 2019) have been developed to do that by considering various aspects, such as peak
season or not (Dunstall et al. 2003; Yim et al. 2004), tourist group (Kinoshita and Yokokishizawa 2008),
transportation mode (Brennan and Meier 2007), hotel services (Silamai et al. 2017), Must-See POI (Taylor
et al. 2018), route attractiveness (Herzog et al. 2019), user’s current location and spare time Kurashima
et al. (2010). For example, with PersTour (Lim et al. 2016; Kurata and Hara 2014), users can specify the
tour duration, tightness, and preferred POI categories (e.g., shopping) and then obtain a recommended tour.
Some tools, such as Aurigo (Yahi et al. 2015) and CT-Planner4 (Kurata and Hara 2014), allowed users to
further refine the recommended tours on demand by adding or deleting some attractions. Using end-to-end
tour planning tools, tourists can quickly obtain candidate tours with simple interactions. Nevertheless,
careful evaluation of the recommended routes and even exploratory refinement are still required because
tourists cannot always accurately externalize their preferences and fully trust the black-box
recommendation.

The step-by-step tools do not require complex computational models. They display comprehensive and
useful information about attractions and provide friendly user interactions. Tourists can construct ideal tours
by adding the attractions of their interests iteratively and manually. For example, Aurigo (Yahi et al. 2015)
adopted a circular lens called Pop Radius to reveal the neighboring attractions of the focus attraction and
thereby facilitated step-by-step tour construction. Some commercial softwares, such as GoogleTravel
(2022), Tripadvisor (2022), and Travelchime Inc (2022), also employed such a step-by-step strategy for tour
planning. For instance, in GoogleTravel (2022), every attraction has several beautiful photographs, com-
ments by tourists, and scores. Their geographic locations are encoded in a geographic map. Using step-by-
step tour planning tools, tourists have carefully evaluated every added attraction by investigating their
contextual information and then arranged them. However, simply based on individual attractions without
explicit relationships between them, it is difficult to assess and determine their order. Compared with the

A

B

C

Fig. 1 Three tour planning strategies. A End-to-end: a user specifies his preferences and a black-box model recommends a
tour; B our proposed tour-based: a user selects attraction sequences based on the visualization of previous tourists’ tours and
then constructs his tour interactively; C step-by-step: a user iteratively selects one attraction of his interest and arranges it into
his tour. Question marks indicate that users may be in trouble
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end-to-end strategy, the step-by-step strategy is a more flexible and reliable manner but indeed a more
tedious and time-consuming process.

By contrast, we attempt to compromise between the two strategies. We first apply a computational model
on crowdsourcing tour data shared on the Web to identify popular attraction sequences called subtours,
rather than a few complete recommended tours in end-to-end strategy. Afterward, we design a set of
visualizations and interactions. Users can reliably and flexibly manipulate these subtours (e.g., merge them
as ideal tours). Manipulating several attractions of a subtour at once avoids tedious step-by-step processes.

2.2 Tour data visualization

Tour data describe tourists’ behaviors in the cities. It can be roughly divided into two categories, namely
materials (e.g., blogs (Sharda and Ponnada 2008) and photographs (Claudio and Yoon 2014; Thudt et al.
2016)) and movement records (e.g., how tourists move). In our study, we focus more on movement records.

Numerous visualization techniques have been proposed for movement data and can be divided into three
categories (Andrienko et al. 2013), namely direct depiction (Klein et al. 2021), summarization (Liu et al.
2021a), and pattern extraction (Deng et al. 2020; Bai et al. 2021). For example, Kádár and Gede (2013)
directly depicted the tourists’ movement records as dots to measure their activity in urban spaces. Lee and
Tsou (2018) directly depict tourists’ trajectories with lines on the map. Hu et al. (2019) summarized massive
and noisy tourist movement data with a graph representation. Chen et al. (2016) extracted movement
patterns from sparsely sampled tourist movement data. In this paper, we adopt a pattern extraction strategy.
In particular, we first identify the popular attraction sequences from the crowdsourcing tour data and then
visually depict them for tour planning.

2.3 Urban visual analytics

Visual analytics (Andrienko et al. 2021; Deng et al. 2023) enables urban practitioners to explore and
analyze urban data via interactive spatiotemporal visualizations (Liu et al. 2023; Wang et al. 2021a; Zheng
et al. 2021; Wei et al. 2021). Urban visual analytics can be divided into urban diagnosis (Liu et al.
2019, 2021b; Deng et al. 2022a, b; Wu et al. 2021; Jamonnak et al. 2022) and decision-making (Takenouchi
and Choh 2021; Liu et al. 2017; Li et al. 2020; Weng et al. 2018). In essence, tour planning is an urban
decision-making problem. Many visual analytics systems have been developed for challenging decision
making in various urban domains. SmartAdP (Liu et al. 2017) helped visually select billboards with higher
exposure potential in cities. ReACH (Weng et al. 2018) assisted citizens in finding ideal homes based on
their routines and corresponding reachability constraints. WarehouseVis (Li et al. 2020) empowered experts
in finding an idea warehouse to satisfy the business demands from a certain area. All three systems
leveraged GPS trajectory data to estimate the situation of cities. SRVis (Weng et al. 2019) is a general
method for tightly integrating spatial context in location selection. The methods above only accommodate
point-based decision making but cannot be applied to our line-based tour planning scenario. More recently,
some line-based approaches have also been proposed. ShuttleVis (Liu et al. 2020) helped authorities
schedule customized shuttle buses to satisfy dynamic commute demands. BNVA (Weng et al. 2021)
allowed experts to optimize bus networks based on the check-ins/outs of passengers. However, they are
highly tailored to traffic data and cannot be applied to tourism scenarios. To this end, we design a set of new
visualizations and interactions for crowdsourcing tour-based tour planning.

3 Requirement and data analysis

This section presents the background of our study, describes the relevant concepts and datasets, and
summarizes user requirements that guide the design of our proposed tool.

3.1 Overview

cT3 is an interactive tool proposed for tourists who plan to travel in a city. We refer to these people as our
target users. Tour planning is a process of determining an ideal attraction sequence (tour) for each day
during traveling. We realize the limitations of existing methods in terms of reliability (i.e., end-to-end) and
efficiency (step-by-step), as we have mentioned in the first section. Thus, we want to empower users to plan
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their ideal tours efficiently and reliably. cT3 is a tour-based tool not an end-to-end nor step-by-step tool.
First, cT3 build upon the popular attraction sequences that are extracted from crowdsourcing tour data and
reflect previous tourists’ experiences. Exploratory tour planning based on previous tourists’ experiences
enables a reliable planning process. Second, cT3 allows users to directly manipulate multiple attractions at
once with flexible interactions, which underpins efficient planning.

3.2 Concepts

We characterize the concepts involved in our tour planning tool based on the tour data as follows.

• An attraction l (Fig. 2A) is essentially a location. Each attraction is associated with the following
attributes: latitude, longitude, attraction type (introduced below), comments, and photographs taken
there. Note that our study introduces a special abstract event called ‘‘Dining.’’ ‘‘Dining’’ indicates that
tourists dine for rest without particular preference and geo-location.

• Eight attraction types are used Shi et al. (2015): geographical landscape (GL), water scenery (WS),
biological landscape (BL), sky and climate landscape (SCL), ruins and monuments (RM), buildings and
facilities (BF), tourist commodities (TC), and human activities (HA). These types follow the
classification of tourism resources in China, where our datasets are collected.

• A tour T (Fig. 2B, C) comprises a set of ordered attractions {l}. Tourists will plan a tour for each day
before traveling and may voluntarily share their tours on tourism web forums for reference by other
tourists.

• A subtour Ts (Fig. 2D) is a contiguous part of a tour and has the same data structure as a tour. Intuitively,
we say a tour T supports Ts if Ts can be derived from T by deleting some or no locations from the
beginning and end of T. The reason we introduce this concept is that users do not follow a shared tour
strictly but are more likely to follow part of it. It allows users to efficiently plan multiple orderly
attractions at once. Moreover, a subtour (or tour) characterizes tourists’ experiences in a structural way.

• An itinerary I (Fig. 2E) comprises the following two properties. (1) Several tours fTg associated with
the city on different days. An itinerary may involve more than one city and last several days. (2) Copy
records how many tourists copy or like this itinerary. In fact, not all users who copy the itinerary will
follow it to travel, but this metric reflects whether the itinerary is worth following.

• Travel experience is borrowed from Nomiyama et al.’s work Nomiyama et al. (2018). It is a subjective
metric for a tourist’s satisfaction with traveling. For example, if a tour is distant, tourists will feel tired;
the tour of going to hot springs after skiing has a good travel experience.

Our method can be applied to crowdsourcing tour data containing attributes corresponding to the above
concepts.

3.3 Requirement analysis

Before designing cT3, we organized a brainstorming session with 8 people and interviewed other 6 people
one-on-one for requirement analysis. All 14 people have experience planning their tours and belong to the
target users.

First, the brainstorming session is started with the following questions: What will you do to prepare for
your travel? Do you find helpful inspiration from other tourists’ itineraries or travelogues? If you were
given many itineraries, how would you leverage them for your planning? The 8 participants involved were
undergraduate and graduate students. Each of them spoke freely about these questions. The brainstorming
session lasted over one hour. Afterward, we summarized their comments and derived initial requirements.

Second, we interviewed other 6 people to derive concrete and systematic requirements. One participant
was a senior researcher, one participant’s previous major was tourism management, two had several years of
expertise in urban planning, and the remaining two are travel enthusiasts who travel an average of 3 times
per year. Each interview lasted 15 min. Participants commented on the initial requirements. Finally, we
identified their requirements in planning ideal tours using crowdsourcing tour data as follows:

R1 Obtain an overview of attractions visually. Questions can be asked, what kind of attractions are mainly
in this city? Natural landscape or amusement park? How are they distributed?

R2 Explore tours efficiently. Users appreciate being able to explore and leverage others’ experiences to
plan their own tours quickly and wisely. Yet, they do not want to be overwhelmed by a large number of
tours.
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R3 Filter and compare tours effectively. During tour planning, users will identify must-see attractions and
conduct filtering accordingly. Besides, they may need to compare different tours and establish which
one or which part (subtour) is more suitable.

R4 Interpret tours convincingly. They hope to know whether or why a tour or subtour is good. For
example, how popular it is? Does it have a good travel experience? Where do tourists go after visiting
this attraction?

R5 Construct ideal tours interactively. After evaluating previous tours, users need to iteratively select and
conveniently connect these tours or part of them to generate final ideal tours.

R6 Modify the tour on demand. Users hope that our tool can support personalized attraction-level
modifications, e.g., inserting a dining event or their favorite attraction into an ideal tour.

3.4 Data analysis

We adopt a frequent substring mining technique to extract popular subtours from tour data. Since the
frequent substring mining is a well-established technique, we only briefly describe it below. Please refer to
Appendix A for more details.

3.4.1 Substring mining

The sheer volume of tour data prevents users from easily acquiring helpful knowledge that can be used in
tour planning. Itineraries are essentially movement data. According to the visual analysis methodology of
movement data (Andrienko et al. 2013), a pattern extraction method is required to extract valuable
knowledge from overwhelming crowdsourcing tour data (R2). Among various algorithms for movement
data (Zheng 2015), sequential pattern mining is the most suitable one in our scenario. It can summarize
massive tour data with frequent occurring subsequences of attractions, i.e., popular subtours. In this way,
users can quickly capture how other tourists visited attractions. Moreover, when planning a tour, users will
not follow a shared tour strictly but are more likely to follow part of it. Extracted popular subtours can well
accommodate such a scenario.

We decide to adopt frequent substring mining, a kind of sequential pattern mining (Han et al. 2007), to
extract popular subtours from itineraries. Briefly, a substring is a contiguous part within a sequence. A
sequence can derive its substring by deleting some or no element from the beginning and end of itself. A
sequence Sb supports another Sa if Sa is a substring of Sb. A substring s (a subtour) is frequently occurring if
the number of sequences (tours) that support it is larger than a pre-defined threshold. We employ a well-

A B C

DE

Fig. 2 Four important concepts used in this study. A An attraction displayed in the map and associated with some photographs
and comments; B, C two illustrative tours comprising a set of ordered attractions. D A subtour of the both tours (B) and (
comprises a set); E an itinerary comprising many tours on different days and recoding the number of times it is copied
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established Apriori-based approach (Agrawal and Srikant 1994) to extract popular subtours given a col-
lection of tours. Users can plan their own tours based on these popular subtours.

Justification. Note that the contiguity feature of frequent substrings is important in mining knowledge
from tour data for tour planning. For example, an extracted subtour based on the substring mining ‘‘A !
Break ! C’’ indicates that tourists usually take a break (e.g., lunch) after visiting attraction A and then go to
C. However, subsequence mining may extract ‘‘A! C’’. The break is missing, which may cause fatigue and
bad travel experience (Nomiyama et al. 2018). Thus, we choose the substring mining rather than the
subsequence mining.

3.4.2 Index mechanism

Given extracted popular subtours, we design indexes to support seamless interactions and scalable
visualizations.

Parent–Children index. We say a subtour T1
s is another subtour T2

s ’s parent (T
2
s is T1

s ’s child) if T
2
s can be

extended from T1
s by appending an attraction from the beginning or end of T1

s . Parent and children subtours
index each other.

Descendant index. Massive popular subtours can be extracted, which hinders effective exploration (R2)
and analysis (R3,R4). So, we propose a definition of super subtour based on the inherent parent–children
relationships and organize the popular subtours accordingly.

We define a subtour is a super subtour if it has no parent. That is, there is no popular subtour can be
generated by extending a super subtour. Based on the recursive parent–children relationships, a super
subtour indexes many popular subtours that belong to its descendants. A super subtour can also visually
represent its indexed popular subtours because they are parts of it, which alleviates the scalability issue.

Attraction-Subtour index. For operating subtours efficiently based on attractions (R3,R6), we construct
an attraction-subtour index. Thus, the subtours involving a given attraction can be quickly retrieved.

4 Framework and implementation

Based on the data and requirement analyses, we propose a tour planning framework as shown in Fig. 3.
(1) The first step is to collect the crowdsourcing tour data, including the itineraries shared by tourists and the
involved attractions (Fig. 3A). (2) Then, a frequent substring algorithm is issued to identify popular subtours
from the tour data (Fig. 3B). (3) Afterward, users are allowed to learn previous tourists’ experiences by
visually exploring and interpreting the popular subtours (Fig. 3C). (4) Finally, users manipulate the subtours
of their interests to construct and modify their ideal tours (Fig. 3D). The third step and the fourth step may
alternate if users need to plan multiple tours.

We develop cT3 following this framework. cT3 is a web-based system for tour planning and constituted
by three parts, namely data storage, backend, and frontend. First, the data storage module stores the
crowdsourcing tour data. Second, the backend, implemented in Python, is used to identify popular subtours
from the tour data. Third, the frontend, written in Vue.js and TypeScript, runs in modern web browsers and
supports visual analysis and interactive manipulation of the identified subtours. The backend and frontend
will be introduced in Sect. 5 and 6, respectively.

5 System design of cT3

To support the gathered requirements, we design a set of visualizations and interactions, and further develop
an interactive tool cT3 (Fig. 4). cT3 comprises a menu (A) and four views, namely map (B), tour (C), ideal-
tour (D). and itinerary (E) views.

5.1 Menu

The menu (Fig. 4A) supports setting the city to visit and the tour of the day to be planned. It also shows the
color scheme for the attraction types used throughout the interface. We divide the eight attraction types into
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two categories according to whether it is a natural scenery or historical and cultural site. For those natural
scenery types, we assign colors close to green; otherwise, we assign colors close to red.

5.2 Map view

The geographic map is very common to provide the necessary spatial context for georeferenced data (Zhang
et al. 2021; Zheng et al. 2021). We also adopt a map to present the attractions, subtours, and planned ideal
tours.

Attraction. Each attraction is basically depicted as a circle and then colored based on the attraction type.
We use the detail-on-demand mechanism to display the attractions. Initially, we encode the popularity and
attraction type, with the size and color of the circle, respectively. To avoid visual clutter, those circles with
low popularity are colored gray. The considerations are that (1) popularity is the most important metric for
attractions, (2) while the type summarizes the content of the attraction from a high perspective. In this way,
users can quickly and intuitively obtain the spatial distribution of different types of attractions in a city (R1).
When users hover on a circle, the corresponding photographs and comments will be shown (Fig. 4b2), and
the corresponding visual elements in the tour view will be highlighted.

(Sub) Tours. For simplification, we use tour to denote subtour and tour in the following, as they have the
same data structure. A tour comprises ordered attractions. We visualize a tour with a graph representation
(Zhao et al. 2021) where the involved attractions are directly linked with curved arrows (Fig. 4b1).

Note that drawing the tours on the map is to help users understand the tours through spatial context (R3),
rather than allow users to explore and plan tours based on this. Attractions are fixed by their geographic
coordinates. Thus, the tours on the map have various and irregular structures, making tour comparison
difficult. Besides, displaying many connected arrows on the map inevitably results in visual clutter and
overlapping, which prevents users from exploring, interpreting, and manipulating tours effectively.

5.3 Tour view

The tour view, the major view of the tool, is designed for visualizing numerous popular subtours and
interacting with them. The tour view and the map view constitute multiple coordinated views for tour data.
Compared with integrated views, such an approach affords more design space. Besides, it displays infor-
mation separately to avoid information overload (Tominski et al. 2021), which is friendly to general users.
Below, we describe the tour view from two aspects, namely visualizations and interactions.

5.3.1 Visualizations

The tour view adopts a uniform layout where the visual elements are neat in the vertical direction, which
organizes the subtours well for efficient exploration (R2) and facilitates comparison (R3). We also encode
popularity-related metrics such that users can visually evaluate and interpret them (R4).

In particular, scalability is the most challenging issue for visualization. To this end, we further identify
super subtours from these subtours, as we described in Sect. 3.4.2. Each super subtour can visually represent
their descendant subtours because they all belong to a part of the super subtour. Consequently, we reduce the
number of subtours to be visualized and thereby alleviate the scalability issue.

A B C D

Fig. 3 Tour-Based tour planning framework. From A the collected crowdsourcing tour data, B a frequent string mining
algorithm identifies numerous popular subtours. C Visualizations support subtour exploration and interpretation, such that users
can learn previous tourists’ experience. Based on these subtours and the learned knowledge, D users construct and modify their
ideal tours
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Based on the descendant relationship, we adopt a two-level hierarchy strategy. In the first level, we only
visualize super subtours. In the second level, we unfold a super subtour by visualizing its descendant
subtours. We describe the view from the two aspects.

Visualizing many super subtours. The tour view contains a list of tour cards (Fig. 4c1, c2) designed for
super subtours. Each tour card has two states, opened and closed. Initially, the tour cards are closed
(Fig. 4c2). A closed tour card only presents the super subtour as well as visual hints of its descendant
subtours.

On the left side, we explicitly display two popularity metrics, namely numbers of tours and itineraries
supporting this super subtour. The lengths of the blue underlines also encode the values, facilitating the
comparison across different cards of super subtours.

On the right side, the super subtour is visualized as a horizontal node-link diagram. First, the nodes
represent the attractions. Their names are placed above them, and their types are encoded with the colors of
the node border (Fig. 6D). The attractions occurring in the super subtours have sufficient popularity,
providing an attraction overview (R1). Furthermore, for each attraction, we calculate how many tourists who
visited this attraction would follow this subtour, i.e., the popularity of the subtour divided by the popularity
of the attraction. Afterward, we encode the ratio with the area of the inner part into each attraction node
(Fig. 6D) because people first perceive the area (Nguyen et al. 2021). Such a ratio reflects how much the
subtour is worth following. Second, the links imply the visiting order from left to right. Each link has the
same length to facilitate alignment and comparison. Yet, we do not encode the popularity of the super
subtour again when the card is closed. When the card is opened, i.e., in the second level, their visual
channels will be utilized for further analysis, for example, comparison with its descendant subtours.

Below the super subtour are its descendant subtours. When the card is closed, there is limited space to
fully visualize these subtours as node-link diagrams. So, we compact them as thin lines. The lines of the
subtours are aligned with its super subtour based on their shared attractions. These compact lines serve as
visual hints.

Unfolding a super subtour. The opened card (Fig. 4c1) has more space such that the super subtour can be
unfolded. Particularly, the descendant subtours are visualized as node-link diagrams like the super subtour.
Moreover, we encode popularity for each subtour, including the super and descendant subtours, with the
thickness of the links. The popularity metrics of the subtours have been normalized within a tour card. So,
users can easily compare them.

A
B C

D

E

b1

b2

c1

c2

c3

Fig. 4 The interface of cT3. A The menu supports setting the travel city and the tour of the day to be planned and also shows
the color legend; B the map view displays the attractions and tours in the spatial context; C the tour view visualizes the
numerous popular subtours identified from the crowdsourcing tour data and implements useful interactions for tour planning;
D the ideal-tour view presents the ideal tours selected from the tour view by users; E the itinerary view shows the final itinerary
with planned tours
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However, thick lines will be biased towards those short subtours, for example, in Fig. 5A and b1,
because the longer the subtour, the more difficult it is to completely appear in tours. We notice that a tour
that supports the child subtour must support its parent subtour. For example, in Fig. 5b1, Tour #1-3 support
both the child and parent subtours, which leads to duplication. Thus, we refine the support of the subtour by
removing the supporting tours that have been in its child subtour. For example, after refinement, the second
subtour in Fig. 5b2 is only supported by Tour #4.

Refined supports produce readable visualizations. It addresses the popularity bias between short and long
subtours and makes the patterns noticeable. For example, the subtour of Fig. 5c1 is obvious, indicating that
many people only visited the two middle attractions; the subtour of Fig. 5b3 is also attractive, showing that
people tend to visit the three attractions consecutively.

5.3.2 Interactions

We implement useful interactions for exploration and planning. As we present the subtours with sequence
visualizations, we refer to the design space of sequence interactions proposed by Guo et al. (2021a) when
designing interactions.

Hovering. Users can hover on the attraction nodes. The hovered attraction will be highlighted across
different views in the interface. The corresponding photographs and comments also will be shown
(Fig. 4b2). In addition, users can hover on the links of a subtour, and then the map view will displays the
subtour (e.g., Fig. 4b1). Thereby, users can obtain the spatial context of subtours for decision making.

Expanding & Collapsing. Users can click the left side of a tour card to open (expand) it (Fig. 4c1). Users
can collapse it by clicking again or expanding another one. This interaction helps to explore numerous
subtours in the two-level hierarchy (R2).

Filtering. Users can filter super subtours (R3) based on attractions by clicking the ‘‘filter’’ icons above
the attractions (Fig. 6a3). Afterward, the super subtours that do not involve the attraction will be filtered out.
In this way, users can specify some particular attractions, for example, must-see attractions. Such a filtering
interaction can also be triggered by clicking circles of attractions in the map view.

Alignment. After filtering, users can further align the subtours by clicking the ‘‘align’’ icon (Fig. 6a3). In
Fig. 6, the five super subtours are aligned based on ‘‘Three Pools...’’. Alignment unveils the positions of the
reference attraction across different subtours (R3), enabling users to know which subtours can be connected
(R5).

Mining. Users can change the support threshold via the slider on the top of the tour view (Fig. 4C). If the
user prefer more popular subtours, s/he can raise the threshold.

A

B

C

c1

b1

b2

b3

Fig. 5 Two examples illustrate support refinement for unfolding a super subtour. Particularly, A–C constitute the first example
showing a tour card before and after support refinement. B is a simple but more concrete example showing the details of
refinement
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The prior interactions (Guo et al. 2021a) cannot fully satisfy our collected requirements because we are
the first to attempt to utilize given sequences (i.e., subtours) to construct new sequences (i.e., final tours). We
propose and implement the following new interactions.

Brushing & Selecting. Users can select the subtour as his ideal tour by brushing a range on the subtour
(R5). The brushed subtour will be highlighted with darker gray (e.g., see Figs. 4c1 and 7b1) and visualized
in the ideal-tour view (Fig. 4D).

Updating. Whenever finishing planning for a day, the attraction in the planned tour will be stored as the
visited attractions. When starting a new day’s planning, the tour view will be automatically updated. The
updated subtours will not include those visited attractions because users usually do not visit the same
attraction twice. In this way, we reduce the workload of users in evaluating and selecting the subtours (R5).

5.3.3 Justification

A tour can be cast as an event sequence. Each attraction in a tour can be viewed as a visiting event.
Therefore, the tour view follows the design space of visual analytics techniques for event sequence data
(Guo et al. 2021b). Guo et al. (2021b) summarized five types of representations for event sequences,
namely chart-, timeline- (Wang et al. 2022), hierarchy- (Wongsuphasawat et al. 2011), sankey- (Wang et al.
2021b; Wu et al. 2022), and matrix-based (Wu et al. 2018) visualizations. We choose the timeline-based
since it is the most intuitive visualizations. Guo et al. (2021b) also concluded seven types of interactions,
filter/query, editing, segmentation, alignment, scaling, emphasis, and aggregation. To satisfy the require-
ments, we implement filter, query, emphasis, and alignment, which enable users to interact with the tours
flexibly.

5.4 Ideal-tour view

The ideal-tour view presents the ideal subtours selected from the tour view. These ideal subtours are
visualized as node-link diagrams like that in the tour view but without visual encodings. We also propose
new interactions for deriving final tours in this view.

Merging & splitting. A final tour may be composed of multiple ideal subtours. Thus, we allow users to
merge subtours in this view (R5). Two subtours can be merged if (1) they have no common attractions or (2)
overlap one or more attractions at their end or beginning. For example, the ideal tour in Fig. 6C is composed
of two ideal subtours in Fig. 6A, B. If two ideal subtours share the same attractions, we assume that users
want to merge them because tourists usually do not visit the same attraction twice. Hence, the tool will
automatically merge the subtours by default. For the two subtours with no common attractions, users can
merge them by dragging one to the beginning or end of the other. Accordingly, splitting is also supported.

Modifying. Users can modify the subtours by adding or deleting attractions (R6) (Fig. 7D). Specifically,
users can click the links of ideal subtours (Fig. 7d1), and then, a window will pop up (Fig. 7d2). Via the
window, users can conduct any attraction-level modification, e.g., adding a dining event after the link
(Fig. 7d3).

Saving. Users can click the ‘‘save’’ icon to save the ideal tour as the final tour in the itinerary view for the
current day.

5.5 Itinerary View

The itinerary view (Fig. 4E) presents the final planned tours day by day. For a final tour on a certain day, we
display the involved attractions from top to bottom. Here, each attraction is represented by its name and a
photo taken there.

6 Evaluation with usage scenarios

We evaluate the effectiveness and usability of cT3 with two usage scenarios on Hangzhou and Guangzhou,
two famous tourism cities in China. To confirm the correctness of the obtained itineraries, we have inter-
viewed 2 local residents for each city, and they reported that these itineraries were reasonable and well
designed. We do not conduct a comparative evaluation. First, comparison under the same results is difficult
because users will have different plans in different tools. Second, most of the existing tour planning tools are
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not open source. We believe the comparison discussed in the first two sections is sufficient to distinguish our
approach from the existing ones.

6.1 Dataset preparation and pre-processing

The datasets on Hangzhou and Guangzhou are collected from one of the most popular tourism forums in
China. Tourists upload their itineraries in a structured way, e.g., ‘‘Day1: A - B - C.’’ Thus, we can extract
structural attraction sequences from the website. Before applying the mining algorithm, we manually unify
the names of the same attractions and replace visiting those less known restaurants with ‘‘Dining.’’

Consequently, the Hangzhou dataset comprises 114 attractions, 1,721 itineraries, and 3,584 tours; the
Guangzhou dataset comprises 47 attractions, 838 itineraries, and 1,431 tours. We apply the substring mining
on these two datasets to extract popular subtours. The detailed properties comprised by the data and mining
results are described in Sec. 3.2. By default, the thresholds for frequent occurrence are 45 and 30,
respectively. The thresholds can be interactively increased via the system interface. The Apriori-based
approach (see Appendix A) is implemented with Python3. Given the thresholds, the runtimes are 11 s and
2.2 s on a desktop running Ubuntu 20.04 with Intel Core i7 3.70GHz CPU, and 16 GB RAM. To deal with
larger datasets, more efficient approaches (Ji and Bailey 2007; Lee and Raedt 2004) can be adopted.

6.2 Usage scenario on Hangzhou

Tom is a travel enthusiast and likes to travel during his vacation. He has never been to Hangzhou. In this
section, we follow Tom to illustrate how our tool assists a user in understanding the crowdsourcing tour data
and then planning his ideal tours in Hangzhou.

Tom first navigated the map view (Fig. 4B). He noticed that most of those circles with large sizes were
green, while only some of them were red. Tom also observed that the green circles were located around a big
lake named West Lake. The observations show that tourists traveling in Hangzhou will go to the attractions
of natural scenery, especially water scenery. He browsed the photographs and comments of the remaining
attractions by hovering on the red circles (Fig. 4b2). Afterward, he knew that there were some buildings
related to sacrifices (e.g., Yue Fei Temple) and religious activities (e.g., Lingyin Temple). Yue Fei Temple
and Lingyin Temple were also observed in the popular subtours (Fig. 4c2), consistent with the map view.
Finally, Tom learned that Hangzhou is a tourist city dominated by natural scenery, especially water scenery,
as well as some religious and cultural attractions.

Day 1: Plan a long tour around West Lake. After obtaining an overview of the attractions in Hangzhou,
Tom hopes to travel West Lake and visit the surrounding attractions in the afternoon of the first day. In the
tour view, the second-longest popular super subtour (the first top subtour in Fig. 4c1) attracted his attention.
We denote it as Subtour #1 in the following for better description. Along with Subtour #1, Tom can travel
around West Lake exactly (Fig. 4b1) and visit seven popular attractions. Tom thought that Subtour #1 was a
good option but worried it was too long and tiring because he only had one afternoon.

He unfolded the tour card of Subtour #1 to analyze how other tourists travel along with it in detail
(Fig. 4c1). The opened tour card displayed other popular subtours contained in Subtour #1. These shorter
contained subtours may lead to a more relaxed and better travel experience. From the tour card, Tom noticed
that those thicker node-link diagrams mainly appear in the front part of Subtour #1. This indicated that
tourists prefer to travel on the front part, i.e., from ‘‘Yang Gong Causeway’’ to ‘‘Orioles Singing in the
Willows’’ (Fig. 4c3). From the map view, Tom also identified between the ‘‘Orioles Singing in the Wil-
lows’’ and ‘‘Bai Causeway’’ is business center where many small popular cafes located. Therefore, Tom
decided to travel around West Lake along with Subtour #1. If he gets tired at the attraction ‘‘Orioles Singing
in the Willows’’ in practice, he will go to the business center for a break.

Finally, Tom brushed Subtour #1 and saved it. He finished the tour planning of the first day and started to
plan for the next day.

Day 2: Connect two tours, and travel West Lake and temples. The theme of the second day’s travel is the
history and culture of Hangzhou. After Tom selected day ‘‘2’’, the popular subtours containing the
attractions visited on the first day will be filtered out. After filtering, the longest popular subtour (Fig. 6A)
happen to involved two of the most popular religious and cultural attractions, Yue Fei Temple and Lingyin
Temple (Fig. 6a1). We denote it as Subtour #2. Tom noticed that Subtour #2 involves two ‘‘Dining’’ events
(Fig. 6a2) and the aforementioned two temples are between them. Thus, Tom knew that tourists usually go
to the two attractions in the afternoon. Tom gladly chose Subtour #2 by brushing it.
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The subtour has only one attraction in the morning, which makes Tom a bit dissatisfied. To extend the
tour in the beginning, Tom filtered out the super subtours that do not involve the first attraction (i.e., ‘‘Three
Pools Mirroring the Moon’’). Then, he further aligned the remaining popular subtours based on the first
attraction. In this way, three subtours that can be connected to the beginning of Subtour #2 were clearly
revealed. Among them, Tom selected the subtour from ‘‘Su Causeway’’ to ‘‘Three Pools Mirroring the
Moon’’ (denoted as Subtour #3) (Fig. 6B). It was because the inner parts of the nodes in Subtour #3 had high
heights (Fig. 6D). This showed that many tourists travel along with Subtour #3, which means Subtour #3 is
likely to result in a good travel experience. In fact, at the end of ‘‘Su Causeway’’, there is a cruise ship dock
where tourists can take a cruise. It is very convenient to go to the attraction ‘‘Three Pools Mirroring the
Moon’’.

After Tom brushed Subtour #3, Subtour #2 and #3 were automatically merged, constituting an ideal tour
(Fig. 6C). Finally, Tom successfully and effectively planned a two-day Hangzhou tour. Tom was able to
enjoy the different types of attractions in Hangzhou.

6.3 Usage Scenario on Guangzhou

John is afraid of tiredness and likes to travel comfortably and loosely. He want to plan a two-day travel in
Guangzhou. In this section, we follow John to further demonstrate how our tool helps users to plan their
tours with individual preferences. This usage scenario also shows that our proposed framework and tool can
be applied to various cities.

John preferred those popular subtours and didn’t want to visit too many attractions in one day. Therefore,
he raised the support threshold and obtained more popular and shorter subtours. Then, John observed the
overview of the attractions in Guangzhou. In both the map and tour views, most of the popular attractions in
the map were red (Fig. 7A). By simply browsing these attractions, John learned that the major tourist
attractions of Guangzhou belong to architectural landscapes (e.g., museum) and human activities (e.g.,
special restaurants) with local characteristics.

Day 1: Modify a tour and obtain a relaxed one.
After knowing the basic information of Guangzhou, John started to analyzed the tour data and then plan

his tours in the tour view. John was very happy to identify the subtour with the largest support (Fig. 7B). We
denoted this subtour as Subtour #4. After John hovered Subtour #4, the spatial context of Subtour #4 is
displayed in the map view (Fig. 7C). It spanned only a few blocks and the total spatial distance was not far.
However, John was a little dissatisfied, because 1) only walking is suitable in this small area, but 2) walking

A

B

C

D

a1
a2

a3

Fig. 6 Planning the tour for day 2 in Hangzhou. The left side is several subtours aligned by ‘‘Three Pools Mirroring the
Moon’’. C The final tour connected by two subtours A, B in the left side. D The attraction node shows that about one-third of
tourists visit ‘‘Su Causeway’’ before visiting ‘‘Three Pools Mirroring the Moon.’’
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across these attractions may make him tried. Thus, he wanted to discard the first attraction ‘‘Chen Clan
Academy’’ because the distance between it and the second attraction occupied half of the total distance.

ToIn order to see the other tourist’s choices, John unfolded the tour card of Subtour #4. The visualization
supported his idea. Specifically, the contained subtours that involved the attractions at the end of Subtour #4
were almost as thick as Subtour #4 (Fig. 7b1). This indicated that many tourists only followed the back part
of Subtour #4, for example, from ‘‘Yuexiu Park’’ to ‘‘Beijing Road’’. Given that, John brush Subtour #4
from ‘‘Yuexiu Park’’ to ‘‘Beijing Road’’ and this subtour was added into the ideal-tour view.

Afterward, John planned to visit ‘‘Yuexiu Park’’ in the morning and the remainder in the afternoon. Thus,
John required dining after visiting ‘‘Yuexiu Park’’ and hence needed to modify the tour (Fig. 7D). He
clicked the link after ‘‘Yuexiu Park’’ (Fig. 7d1) and inserted a dining-event (Fig. 7d2). Finally, an ideal
relaxed tour for the first day was successfully derived and saved (Fig. 7d3).

Day 2: Directly select a tour with good travel experience.
John started to plan for the second day. After the tour view was updated, only a few subtour were left.

John noticed the subtour (denoted as Subtour #5) involving four attractions and two dining events (Fig. 7E).
Subtour #5 implied visiting two attractions in the morning and other two in the afternoon. John thought it
acceptable.

He directly selected and saved it as his second-day’s tour after analyzing the travel experience from the
following two aspects. (1) Popularity. The tour card of Subtour #5 unveiled two thickest subtours involving
the attractions to be visited in the morning and afternoon, respectively (Fig. 7e1 and e2). The thicknesses
showed that many tourists visited the previous attraction and then visited the next attraction and hence
implied good travel experience. (2) Spatial distance. Both the spatial distances between the first two
attractions and the last two were close (Fig. 7F). John, who is afraid of tiredness, highly appreciated this.
Being close may also be the main reason for good experience for tourists.

7 Discussion

This study has two implications. First, it is the first step towards tour planning using crowdsourcing tour
data. We propose a tour-based tool planning framework and accordingly implement a novel interactive tool.
Such a tour-based approach features a balance between efficiency (end-to-end) and reliability (step-by-step).
The subtours identified by the pattern extraction model authorize users to select multiple attractions at once
and thereby ensure efficiency, while the proposed interactive visualizations provide a transparent and
confident environment for tour planning, which improves reliability. Second, we prove the value of
crowdsourcing tour data, which brings enlightenment to those tourism forum or platform managers. Cur-
rently, on many forums, itineraries are only shared in an unstructured text form. Extracting structured and
ready-to-use itinerary data from such text via NLP techniques remains a challenge. To collect high-quality
data, managers can intentionally encourage users to share their itineraries and provide useful user interfaces
for collecting data with more dimensions in a structured way. Afterward, higher-quality data can be used for
better tour planning, which can improve the functionality of the platforms.

The gained insights during proposing this approach can be concluded as follows. First, the data on the
Web cannot be directly used. Filtering is needed. For example, not all visitors to forum websites share their
itineraries and comments sincerely and carefully. In this study, we filter out those short tours (less than 3
attractions) and short comments (less than 10 words). Second, no matter how powerful models are, the
human intelligence should be retained in a practical and useful system. The popularity adopted in this study
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Fig. 7 Tour planning in Guangzhou. A Overview of attractions. B A tour card and C the spatial information of the super
subtour with the largest support. D Personalized modification of an ideal subtour. E The tour card and F the spatial information
of a subtour with good travel experience
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can be easily understood and accepted by users. Besides, to further ensure practicality, we adopt multiple
coordinated views and level-of-detail mechanism to support exploration and interpretation.

Three limitations are observed in this study. First, the interface of cT3 adopts multiple coordinated
views, which prevents users from exploring and utilizing the subtours well with geographic context to some
degree. Nevertheless, we believe it is the best solution to enable general users to successfully complete the
complex requirements. Weng et al. (2019) propose SRVis, a novel visualization for integrating spatial
context for point-based decision making. Yet, SRVis cannot accommodate our line-based scenario. We
think this problem of integrating spatial context tightly for line-based decision making is valuable and plan
to study it in the future. Second, the functionality of the tool needs to be improved, such as booking hotels
and tickets, checking the opening hours of attractions. However, we believe it is beyond the research scope
of this study, which mainly focuses on tour-based tour planning. In the future, we will be committed to
cooperating with commercial companies to promote and deploy this new tourism planning paradigm. Third,
the system can be further validated by user studies. In the future, we plan to implement prototypes of
previous approaches for comparison. Users could be required to plan their tours freely or complete some
tasks using different approaches. Besides, user feedback could be collected with post-study questionnaires.
Such that, we can understand our approach’s weaknesses and advantages compared with previous
approaches and thereby further improve it.

8 Conclusion

We study how to make better use of tour data on the web. To enable users to leverage the previous tourists’
experience for tour planning, we propose a concept of subtour and employ a frequent substring mining
technique to identify popular subtours from the large-scale tour data. Based on the popular subtours, we
compile user requirements and propose a tour-based tour planning framework, which guides us to develop a
novel interactive tool cT3. To our knowledge, we are the first to study empowering users to plan their ideal
tours efficiently and reliably with prior tourists’ experiences.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12650-
022-00884-1.
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