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Abstract— With the rapid development of sensing technologies,
massive spatiotemporal data have been acquired from the urban
space with respect to different domains, such as transportation
and environment. Numerous co-occurrence patterns (e.g., traffic
speed < 10km/h, weather = foggy, and air quality = unhealthy)
between the transportation data and other types of data can
be obtained with given spatiotemporal constraints (e.g., within
3 kilometers and lasting for 2 hours) from these heterogeneous
data sources. Such patterns present valuable implications for
many urban applications, such as traffic management, pollu-
tion diagnosis, and transportation planning. However, extracting
and understanding these patterns is beyond manual capability
because of the scale, diversity, and heterogeneity of the data.
To address this issue, a novel visual analytics system called
CorVizor is proposed to identify and interpret these co-occurrence
patterns. CorVizor comprises two major components. The first
component is a co-occurrence mining framework involving three
steps, namely, spatiotemporal indexing, co-occurring instance
generation, and pattern mining. The second component is a
visualization technique called CorView that implements a level-of-
detail mechanism by integrating tailored visualizations to depict
the extracted spatiotemporal co-occurrence patterns. The case
studies and expert interviews are conducted to demonstrate the
effectiveness of CorVizor.

Index Terms— Heteorgeneous urban data, spatiotemporal data
visualization, co-occurrence pattern analysis.
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I. INTRODUCTION

THE rapid development of sensing technologies has
resulted in a large amount of heterogeneous urban data

acquired from different data sources, such as traffic and
air quality data. These data inherently comprise numerous
interesting co-occurrence patterns, i.e., the combinations of
the property value ranges that frequently co-occur with each
other. These patterns appear frequently within a spatial range
and a temporal window and may comprise properties from
various data sources. For example, given three data sources,
namely, transportation, weather, and air quality, and spa-
tiotemporal constraints (within 3-kilometer range and 2-hour
window), a fine-grained co-occurrence pattern like {20 <
TrafficVolume < 30, 100m/s < WindSpeed <
150m/s, AirQuality = healthy} may be identified. These
fine-grained patterns reveal important spatiotemporal insights
and anomalies (i.e., counterintuitive co-occurrence patterns)
across multiple data sources that support numerous urban
decision-making applications, including traffic management
and transportation planning.

However, neither have such co-occurrence patterns been
systematically studied and detected, nor effectively interpreted
and understood. Two challenges arise from the identification
and interpretation of these patterns: a) efficient extraction and
b) interactive visualization.

Efficient extraction of the co-occurrence patterns is consid-
erably difficult, particularly from the heterogeneous urban data
sources that comprise various properties, such as PM2.5 and
PM10 in air quality data and temperature and humidity in
meteorological data. Without an efficient approach, exhaus-
tively testing all possible combinations of these properties
to find the potential patterns will result in poor computa-
tional performance as the number of properties increases.
Furthermore, the aforementioned patterns are fine-grained on
continuous value domains and may involve both categorical
and numerical properties. However, most of the traditional
co-occurrence mining techniques, such as Apriori [1], [2],
are specifically designed to detect the coarse association rules
(i.e., co-occurrence patterns), such as {butter,bread} ⇒
{milk}, among categorical attributes only. Some recent tech-
niques [24], [50] that extract patterns from numerical data
generally require the continuous domains of property values
to be initially discretized, thereby resulting in the severe loss
of latent patterns.

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on May 20,2020 at 14:35:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1119-3237
https://orcid.org/0000-0003-2712-7274
https://orcid.org/0000-0002-6885-3451
https://orcid.org/0000-0002-5224-4344
https://orcid.org/0000-0002-8365-4741


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The extracted co-occurrence patterns also require a
well-designed visualization technique, with which domain
experts can examine these frequent co-occurrences, identify
spatiotemporal trends, and study anomalies. However, it is
difficult to develop an appropriate technique that visualizes
these patterns because of three identified design challenges:
a) diversity: the data properties involved in the visualized
co-occurrence patterns may have different types, scales, and
semantics; b) volume: numerous patterns with overlapping
value ranges can be extracted from heterogeneous urban data;
c) organization: a combination of properties can be shared by
many patterns, thereby forming a two-level hierarchical struc-
ture where the designed visualizations should enable experts
to explore the hierarchy flexibly and efficiently. To the best of
our knowledge, none of the existing visualization approaches,
including parallel coordinates and parallel sets [25], can be
applied directly to address these challenges, which demand
a set of considerate visualizations specifically tailored on
the basis of the unique characteristics of the extracted
patterns.

In this study, we develop a novel data mining model that
extracts co-occurrence patterns from massive urban data based
on three main modules: a) spatiotemporal indexing that builds
a unified index structure to accelerate the following mining
process, b) co-occurring instance generation that identifies
co-occurring instances and builds a pruning graph to reduce
the search space of patterns, and c) pattern mining that
aggregates the data by using value matrices and extracts dis-
tinct patterns via an improved sweep-line algorithm. We also
propose a new matrix-based visualization technique named
CorView, which effectively depicts the extracted patterns
that comprise properties of different data types, scales, and
semantics in an aligned fashion. Particularly, we address the
scalability issue by adopting a level-of-detail mechanism that
integrates brick-like glyphs, scatterplots, parallel coordinates,
and a stacked line chart. Furthermore, we design CorVizor,
a novel visual analytics system that helps users reliably
detect and analyze the co-occurrence patterns in cross-domain
urban data. The major contributions of this study are as
follows.
� We characterize the problem of identifying and inter-

preting the fine-grained spatiotemporal co-occurrence pat-
terns among the cross-domain urban data sources;

� We develop CorVizor, a visual analytics system that
integrates a pattern mining framework and a multi-scale
visual representation to assist experts in detecting,
exploring, and interpreting the co-occurrence patterns
effectively;

� We evaluate the proposed system with the case
studies conducted on the real-world data, where the
co-occurrence patterns among traffic status, air pollution,
and weather conditions are studied.

II. RELATED WORK

This section discusses related studies in the following three
parts, namely, co-occurrence pattern mining, spatiotemporal
visualization, and co-occurrence visualization.

A. Co-Occurrence Pattern Mining

Co-occurrence pattern mining techniques were proposed to
identify frequent co-occurrences among categorical or numer-
ical data properties.

Traditional techniques like Apriori [1], [2] and PrefixS-
pan [3] attempt to extract the patterns from transactional
datasets and thus were limited to handling categorical data.
Similar methods have been adapted to transactional urban
datasets, where the extraction of co-occurrence patterns from
the moving object [10], boolean [35], [59], and event [7],
[30], [37] datasets in spatiotemporal contexts were extensively
studied. However, these techniques cannot be directly applied
to solve our problem since most of the properties like traffic
speed and volume in heterogeneous urban data have continu-
ous domains.

Techniques [24], [39], [50] were also proposed to handle
numerical data by dividing the continuous domains of proper-
ties into a number of bins. However, such discretization may
lead to the severe loss of latent patterns. Other studies have
attempted to avoid the discretization with topological methods
in spatiotemporal contexts. Chirigati et al. [14] developed a
topology-based method named data polygamy. This method
efficiently captures the relationships between extrema in urban
datasets. Nonetheless, it can only identify the co-occurrences
that comprise the peaks or valleys of data properties.

We define co-occurrence patterns as the flexible value range
combinations of both numerical and categorical properties in
heterogeneous urban datasets. Based on this definition, our
model can extract the fine-grained patterns efficiently without
discretization of the domains.

B. Spatiotemporal Visualization

The rapid development of smart cities enables author-
ities to collect citywide spatiotemporal data via sensors
more efficiently than ever, making data-driven solutions
possible for urbanization problems like air pollution [16],
traffic congestions [56], and transit route planning [51].
To integrate human in the analysis loop, spatiotemporal data
visualization has been investigated and applied in many set-
tings, such as billboard location selection [28], public utility
analysis [58], home location selection [52], and hotspot pre-
diction [31]. Andrienko et al. [4] provided an excellent tax-
onomy of existing spatiotemporal visualization methods for
movement data, which are classified into three categories,
namely, direct depiction (e.g. points [20], polylines [5], stacked
bands [45], and space-time cubes [6]), summarization (e.g.
density maps [41], [53], graphs [46], and flow maps [21]),
and pattern extraction [12], [23], [55]. Sun et al. [43] also
explored the better integration of temporal information in
spatial contexts by transforming maps. To handle large-scale
spatiotemporal data, many novel methods have been incorpo-
rated into visualizations, such as tailored query model [20],
topological methods [17], [34], uncertainty analysis [12], and
anomaly detection [9]. However, most of the prior studies
focus on single-source data only, including trajectory [40],
cellphone [55], [60], and weather data [38]. In contrast, our
study targets at visualizing multi-source heterogeneous data,
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which poses difficult design challenges arisen from the unique
characteristics of co-occurrence patterns.

This work establishes a pattern extraction method that aims
to detect and visualize an extensive number of fine-grained
co-occurrence patterns among heterogeneous datasets. In par-
ticular, various types of urban data from multiple domains
were analyzed and explored through a mining model and a
set of tailored visualization techniques.

C. Co-Occurrence and Correlation Visualization

Visually understanding and analyzing the massive extracted
co-occurrence patterns remain a difficult and challenging task.
Many co-occurrence and correlation visualization methods tar-
geting categorical data have been proposed based on scalable
techniques like 2D plots [27], [29], graphs [18], parallel coor-
dinates [57], and matrices [22], [54]. For numerical datasets,
Bothorel et al. [8] proposed a visual mining pipeline based on
the Apriori algorithm, yet the value ranges must be discretized.

Recently, the visual analytics of spatiotemporal co-
occurrence and correlation patterns has attracted wide research
interests. Qu et al. [38] studied the visualization of cor-
relation between various weather attributes. TelCoVis [55]
was designed to illustrate the human co-occurrence patterns
with mobile phone data. Furthermore, a few studies have
considered the complex co-occurrence and correlation pat-
terns among multiple data sources. Urbane [19] combines
datasets from diverse domains for target building selection.
VAUD [13] allows users to explore cross-domain correlation
based on visual query and reasoning. COPE [26] detects
various co-occurrence patterns of spatiotemporal events via a
well-designed visual interface. However, most of these visual-
ization techniques neither integrate with an automated mining
model nor involve the co-occurrence patterns characterized by
combinations of continuous value ranges and categorical sets.
Thus, finding and interpreting interesting patterns will become
increasingly difficult with the growing size of datasets.

In this paper, we design a novel analytics system that
combines several interactive visualizations specifically tailored
for the massive fine-grained co-occurrence patterns extracted
by the proposed model in spatiotemporal contexts.

III. BACKGROUND AND SYSTEM OVERVIEW

This section presents the background, problem, and
over-view of the proposed system.

A. Background

Our study mainly focuses on extracting, visualizing, and
evaluating frequent spatiotemporal co-occurrence patterns
obtained from heterogeneous urban data. We introduce the
following terminologies in the extraction of spatiotemporal
co-occurrence patterns. For each annotation, the superscript
is used to distinguish different objects, and the subscript is to
indicate the association of the current object.

� Data source: A data source s ∈ S = {s1, s2, . . . , sn}
comprises a set of spatial locations {l1, l2, . . .} ∈ L,
each of which is associated with a set of time-varying

TABLE I

PROPERTIES OF THREE DATA SOURCES

properties {p1, p2, . . .} observed at the location. The
data sources used in this study are shown in Table I
with their properties.

� Instance: An instance ϕ, associated with a data source s,
comprises a spatial location l, a timestamp t , and a
value v p of the property p observed at the time t and
location l. For example, Fig. 1(a) presents six instances:
ϕ1

sα and ϕ2
sα from the property p1 of the data source sα ,

ϕ1
sβ and ϕ2

sβ from the property p1 of the data source

sβ , and ϕ1
sτ and ϕ2

sτ from the property p1 of the data
source sτ .

� Property value range: We denote a specific value range
of the property p in the data source s as sp|C. The
range C can either be numeric (e.g. [5, 8]) or ordinal
(e.g. {cloudy}), depending on the type of the property p.
We say an instance ϕ satisfies a property value range
sp|C iff. (1) ϕ is collected from the property p and
(2) the observed value v p of the property p is within
the range of C, i.e., v p ∈ C. For example, in Fig. 1(a),
the value range of the property p1 in the data source sτ

can be written as sτ
p1 |[5, 8].

� Co-occurring instances: The instances co-occurring
w.r.t. a given target instance within the user-specified
spatial and temporal thresholds are defined to be
co-occurring instances. Fig. 1(a) shows an example of
five instances ϕ2

sτ , ϕ1
sα , ϕ2

sα , ϕ1
sβ , and ϕ2

sβ of the data
sources sτ , sα , and sβ that co-occur w.r.t. the instance
ϕ1

sτ within the spatial and temporal thresholds d and t .
� Co-occurring property value ranges: By extracting

and combining co-occurring instances, we can obtain
the co-occurring property value ranges comprising the
values of these instances w.r.t. a target property. Fig. 1(b)
shows an example of the co-occurring value ranges of
the properties in the data sources sα and sβ w.r.t. the
property in the target data source sτ .

� Co-occurrence coverage: The co-occurrence coverage
of a combination of co-occurring property value ranges
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Fig. 1. (a) Co-occurring instances and (b) examples of co-occurring property
value ranges.

w.r.t. the target data source sτ is defined as the number
of the co-occurring instances in the given property value
ranges involving sτ divided by the total number of the
instances in sτ (denoted by |sτ |).

� Co-occurrence pattern: A co-occurrence pattern is
defined as a combination of co-occurring property value
ranges, the co-occurrence coverage of which is higher
than a given threshold w.r.t. the target data source sτ .
A pattern can be written as {sτ

pu |C, {sα
px |C, sβ

py |C, . . .}},
where sτ

pu |C, sα
px |C and sβ

py |C are the co-occurring prop-
erty value ranges w.r.t. the target property sτ

pu .

B. Problem Definition

Given a target data source sτ , a group of data sources
S = {s1, s2, . . . , sn}, and a set of mining parameters, including
the spatial distance d , temporal window t , and co-occurrence
coverage threshold λe, the objective is to identify all distinctive
co-occurrence patterns efficiently and comprehend them via
interactive visualizations.

C. System Overview

We develop CorVizor, a web-based visual analytics sys-
tem that can assist urban experts in interpreting and ana-
lyzing co-occurrence patterns extracted from heterogeneous
urban data. CorVizor comprises two components: data mining
and interactive visualization. The mining component, imple-
mented in C#, indexes heterogeneous spatiotemporal data,
extracts co-occurring instances, and performs pattern min-
ing, transforming raw data into interpretable patterns. The
visualization component, implemented in TypeScript, visual-
izes co-occurrence patterns with four tailored views, thereby
enabling users to interactively filter, compare, and evaluate the
patterns across multiple data sources.

IV. MINING FRAMEWORK

Detecting fine-grained co-occurrence patterns from hetero-
geneous urban data sources is difficult because spatiotemporal
urban data generally do not have transactions. Moreover,

Fig. 2. Overview of the mining framework.

the data sources may comprise diverse value scales, including
numeric and categorical scales. Furthermore, characterizing
the co-occurrence patterns as the combinations of continuous
property value ranges and categories easily leads to a huge
combinatorial solution space of the possible co-occurrence
patterns. Given these challenges, traditional mining techniques,
such as Apriori [2], cannot be applied directly to address
our problem. Thus, we propose a mining framework with the
following three modules (Fig. 2) to tackle the challenges:

1) indexing spatiotemporal data with a nested data struc-
ture to accelerate the subsequent mining process;

2) generating co-occurring instances by identifying these
instances with the unified indexes and pruning impossi-
ble co-occurring instances;

3) mining co-occurrence patterns with a novel sweep-line
algorithm based on the value matrices constructed from
the generated instances.

A. Indexing Spatiotemporal Data

At this stage, we build a unified index [11], [15], [48] for
large-scale heterogeneous spatiotemporal data (Fig. 2(a)) to
enable faster data retrieval with different mining parameters
specified and accelerate the subsequent mining stages. To con-
struct the index, we divide the map into n × m spatial grids,
each of which has an area of 1km2. Each grid maintains the
covered instances with a temporal index, where the instances
are organized by their timestamps with a B+ tree. Each
leaf node of the B+ tree records the ID, data source ID,
GPS location, and timestamp of an instance.

B. Generating Co-Occurring Instances

With the target data source sτ , spatial threshold d , temporal
threshold t , and expected co-occurrence coverage λe, the pro-
posed mining framework attempts to extract co-occurring
instances with co-occurrence tables and pruning graphs
(Fig. 3) from the spatiotemporal index built at the previous
stage.

Authorized licensed use limited to: Zhejiang University. Downloaded on May 20,2020 at 14:35:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: TOWARDS BETTER DETECTION AND ANALYSIS OF MASSIVE SPATIOTEMPORAL CO-OCCURRENCE PATTERNS 5

Fig. 3. (a) The instances extracted from data sources (one row for each data source), (b) a co-occurrence table (20 co-occurring instances, each described
by a row), and (c) a pruning graph built with 20 co-occurring instances.

First, range queries based on the spatial and temporal
thresholds are issued for each instance of target data source sτ

to identify co-occurring instances within the same property of
the target data source or in other data sources. Based on the
given spatial distance and temporal range, the co-occurring
instances (Fig. 3(a)) in a spatiotemporal cylinder of each
instance in st (Fig. 2(b)) are organized into a co-occurrence
table (Fig. 3(b)) by the instances in st . Additionally, the val-
ues of the co-occurring instances associated with the same
property are aggregated and represented with a value range.

Next, a pruning graph (Fig. 3(c)) is created to characterize
all combinations of the data sources associated with the
detected co-occurring instances, such that impossible com-
binations are pruned at the data source level. The basic
idea is that no frequent spatiotemporal patterns of two data
sources is present if no sufficient co-occurring instances are
found from the two data sources. Each node represents a
potential combination of data sources with (1) the IDs of the
involved data sources, (2) a list of the co-occurring instances
of the involved data sources, and (3) a counter storing the
number of the co-occurring instances. For example, the node
labeled {Sα Sβ, 3} in Fig. 3(c) indicates that three co-occurring
instances can be extracted from the data sources Sα , Sβ ,
and Sτ . Links between the nodes depict downward closure
relations [1], i.e., an upper-level node contains all the instances
of its linked lower-level nodes. Therefore, the insignificant
combinations of data sources can be quickly detected and
invalidated from the top to the bottom at this stage, by remov-
ing the nodes whose number of associated co-occurring
instances is lower than the specified threshold (λe · |sτ |,
as per the definition of co-occurrence coverage), as illustrated
with gray nodes in Fig. 3(c). Corresponding rows in the
co-occurrence table are removed thereafter. Hence, the prop-
erty combinations belonging to invalid data source combi-
nations are eliminated, thereby accelerating the subsequent
pattern mining stages.

C. Mining Co-Occurrence Patterns

We propose a two-fold approach to extract frequent patterns
from the co-occurrence table and pruning graph. This approach
comprises two steps: (1) Low-Level Pattern Mining entails
identifying low-level patterns that comprise the co-occurring
value ranges between the properties of target data source sτ

and another data source and (2) High-Level Pattern Min-
ing involves identifying high-level patterns that comprise
the co-occurring property value ranges across multiple data
sources.

1) Low-Level Pattern Mining: Low-level pattern mining
aims to find significant combinations of the co-occurring value
ranges between a property in the target data source sτ and one
in another data source by a) aggregating the co-occurring prop-
erty value ranges discovered at the previous stage with value
matrices and b) performing a novel sweep-line based algo-
rithm on the value matrices to identify the salient co-occurring
property value ranges that satisfy the given threshold λa .

a) Range aggregation: We first enumerate every possible
pair of properties. Then, we aggregate all combinations of
co-occurring property value ranges (which we have discovered
at the previous step) between two properties in each pair. The
aggregation is achieved with a value matrix (Fig. 2(c)). Axes of
the value matrix represent the categorical or discretized numer-
ical domains of properties px and py , while each cell (i, j) in
the matrix denotes a property value combination of v px = i
and v py = j . We overlay the combinations of co-occurring
property value ranges extracted from the co-occurrence table
(rectangles in Fig. 2(d)) on the value matrix and maintain the
combination and instance counts collected from the covered
range combinations for each cell.

b) Pattern identification: Given a value matrix, salient
patterns appear as the rectangular areas on the matrix in which
the instance count of every cell covered by the area is larger
than λe ·|sτ |, where λe indicates the user-desired co-occurrence
coverage and |sτ | represents the number of instances of sτ . To
detect these areas, we develop a fast algorithm based on the
sweep line (Alg. 1). Specifically, we sweep the domain of a
property column by column and construct rectangular areas
along the way. sw represents the sweep window discovered in
the previous column, and col represents the current scanning
column. For each column, the algorithm detects vertically con-
tinuous sweep windows (cf. L3) in which every cell satisfies
the constraint and maintains two states, namely, ASW for the
active sweep windows detected in the previous column and
NSW for the new ones detected in the current column. To
replace ASW with NSW, the algorithm considers three cases:
� Case 1: Continued. A sweep window in ASW entirely

continues in N SW , thereby remaining active (cf. L5-6).
� Case 2: Discontinued. A sweep window in ASW com-

pletely disappears in N SW , thereby being removed from
ASW . A new rectangular area will be constructed from
the swept area and inserted into the result set RS
(cf. L7-9).

� Case 3: Partially continued. A sweep window in ASW
only partially continues in N SW . This sweep win-
dow will be invalidated and regarded as a discontinued
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Algorithm 1 Sweep-Line Pattern Mining Algorithm
Data: Value Matrix V M , desired coverage coverage λe.
Result: The result set RS with maximal rectangles in the

matrix.
1 ASW ← ∅, N SW ← ∅ ;
2 for Each column col in V M do
3 N SW ← continuous qualified (satisfying λ > λe)

cells in col ;
4 for sweep window sw ∈ ASW do
5 if sw continues in col then
6 keep sw in ASW ; /* cont’d */
7 else if sweep window sw not continue in col then
8 RS ← result(sw and col) ; /* discont’d

*/
9 remove sw from ASW ;

10 else
11 RS ← result(sw and col) ;

/* part. cont’d */
12 remove sw from ASW ;
13 shrink sw to the partially overlapped range sw�;
14 ASW ← sw� ;

15 for sweep window sw ∈ N SW do
16 if sw does not have the same window in ASW

then
17 ASW ← sw

window (Case 2), and a new shrunk sweep window will
be created with the rows that continue from ASW to
N SW (cf. L11-14).

In addition, new sweep windows in N SW which are
not covered by the above cases will be added to ASW
(cf. L15-17). Hence, the low-level patterns between two
properties (i.e., the combinations of property value ranges
satisfying the given threshold λe) are obtained from the result
set RS.

2) High-Level Pattern Mining: The low-level patterns
enable the framework to generate and validate high-level
patterns that involve three or more data sources (including
the property from the target data source).

a) Candidate generation: High-level pattern candidates
can be generated by intersecting low-level patterns. For
example, pattern candidate {sτ

pu |(C � ∩ C ��), {sα
px |C, sβ

py |C}} can
be generated from the intersection of low-level patterns
{sτ

pu |C �, {sα
px |C}} and {sτ

pu |C ��, {sβ
py |C}}. We only keep candi-

dates whose property value ranges are not empty.
b) Pattern validation: A pattern candidate is considered

valid only if the number of the instance combinations it covers
is larger than λe · |sτ |. Valid high-level patterns are inserted
into the result set for further interactive analysis.

V. VISUAL DESIGN

This section discusses analysis tasks, design rationales, and
the visualization techniques specifically designed for interpret-
ing the extracted patterns.

A. Design Rationales

Although the model can efficiently extract co-occurrence
patterns, interpreting massive co-occurrences, detecting
unusual anomalies, and obtaining high-level insights remain
challenging. Visualization techniques are highly necessary to
help expert explore the extracted co-occurrence patterns.

In this study, we have conducted a user-centered design
process with three interdisciplinary urban planning experts
over the past year. These experts have more than 10 years
of experience in developing data-driven solutions for various
urban problems, such as location selection, energy planning,
and pollution analysis. They approached us to seek an inter-
active visualization system for interpreting and analyzing the
co-occurrence patterns among different heterogeneous data
sources, including city-wide meteorological and traffic data,
collected in urban environments. Through frequent discussions
with the experts, two important analysis tasks, macro- and
micro-level analyses, were identified.

1) Macro-Level Analysis: Users select proper mining para-
meters and wish to see the statistical distribution of all
value ranges regarding individual properties. Users also select
properties and value ranges that they are interested in for
further analysis. A visual summary of co-occurrence patterns
should be provided to help users determine a specific property
combination and proceed to the micro-level analysis to inspect
the co-occurrence patterns in this combination.

2) Micro-Level Analysis: A clear overview of the
co-occurrence patterns of a given property combination should
be provided. Subsequently, users may group interesting pat-
terns for observation and comparison. The spatiotemporal
distribution of the instances of the patterns should also be
provided for further validation and analysis of the patterns.

Based on these two analysis tasks, the design rationales
behind our system are derived and summarized below.

R1 Generating a visual summary of massive patterns
It is challenging to analyze a large number of the
patterns individually without a clear visual summary.
Such a summary should enable the users to understand
how data properties are co-occurring (e.g., finding out
whether air pollution is co-occurring with traffic con-
gestion or high traffic volume).

R2 Allowing statistical analysis of properties
Obtaining an intuitive understanding of the overall data
range distribution is difficult. Users need a visualization
that presents the statistical information of the range
distribution of each data property. For instance, the users
can determine a pattern does not involve traffic conges-
tion if statistics of the pattern indicates that the value
ranges of “Low Speed %” are relatively low.

R3 Enabling interactive visual exploration of patterns
In addition to the summary overview of all patterns,
users need a steerable environment to find interesting
patterns and conduct further analysis. Hence, the sys-
tem should enable domain experts to interact with the
patterns directly by supporting various interactions like
filtering, ranking, and grouping to unfold and inspect the
patterns.
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Fig. 4. CorVizor consists of four main views (CorView, STView, StatView, and PatTable) for detecting and understanding co-occurrence patterns.

R4 Visualizing the spatiotemporal information of pat-
terns
A pattern can be associated with many spatiotemporal
instances occurring over space and time. The users
would like to obtain the spatiotemporal distribution of
the pattern’s instances in order to answer questions like
whether the pattern occurs frequently in the suburbs or
whether it happens periodically.

R5 Applying different model parameters
The mining model may not always produce the most
desirable results. In order to integrate the domain knowl-
edge into to the analysis pipeline and allow users to
iteratively improve the result of pattern extraction, user
interaction with the model should be supported to select
different results of the model.

In the design process, we identified three challenges,
namely, diversity, volume, and organization (detailed in
Section I). We tackle these challenges by designing CorVizor
with four linked views, including CorView, STView, StatView,
and PatTable (Fig. 4), based on the aforementioned rationales.
CorView is the core component and provides a matrix-style
visual summary of the patterns of all property combinations
(R1). Multi-level interactive exploration is naturally supported
(R3). StatView displays the distributions of value ranges
of different data source properties (R2). STView shows the
spatiotemporal information of the target instances associ-
ated with the patterns (R4). PatTable presents the details
of the selected patterns in a table (R3). Choosing different
model parameters are also supported (R5) in the Info Panel
(Fig. 4(a) and Fig. 10(a)).

B. CorView

This section presents the design of CorView, which
visually summarizes the patterns of property combinations
(Section V-B1) and interactively unfolds those of a selected
property combination (Section V-B2).

1) Visualization of Property Combinations: The property
combinations can be simply presented with tree visualization
(Fig. 3(c)). However, such representation suffers from scal-
ability issues and visual clutters given that a large number
of the combinations can be generated. We adopt a scalable
matrix-based approach (the volume challenge) to visualize
the property combinations shared by massive co-occurrence
patterns (R1) and provide an unified overview for the diverse
data properties among the patterns (the diversity challenge).
The matrix-based approach is easy to understand and allows
users to make efficient visual comparisons of the property
combinations in an aligned manner.

Each column in the CorView represents a property, and each
row (Fig. 4(i)) represents a group of the co-occurrence patterns
with the same property combination (e.g., the patterns that
indicate the frequent co-occurrences between “Low Speed %”
and “AQI” will be grouped into the same row). In each row,
a set of linked rectangular glyphs visualize the summary
of the pattern group. Each glyph contains a density map
(Fig. 4(c)), which reveals the value range distribution of the
property corresponding to the column where the glyph resides.
The darker areas indicate that the corresponding value ranges
appear more frequently in the patterns. The properties in
the target data source and other data sources are shown in
green and orange, respectively. In addition, the numbers of
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Fig. 5. Example of the visual encodings of the stacked line chart (b) and parallel coordinates (c) for a pattern in (a).

patterns and instances for each group of patterns are visualized
with two bars in each row (Fig. 4(d)). By clicking on the
column headers (Fig. 4(b, k), users can filter out the property
combinations that do not contain the selected properties or
sort the combinations based on the numbers of patterns or
instances.

2) Visualization of Co-Occurrence Patterns: To maintain
scalability of the overview of a property combination’s pat-
terns, a collection of highly scalable and well established visu-
alization techniques are chosen to support the coordinated and
multifacet analysis of the multidimensional patterns. Users can
unfold a property combination in the CorView and analyze the
patterns with the selected combination using a similarity-based
scatterplot (R1), a tailored parallel coordinates plot, and a
stacked line chart (Fig. 4(h)) in the expanded view (Fig. 4(e)).
The scatterplot provides an overall picture of the similarity
among co-occurrence patterns, thereby enabling users to group
the patterns and detect anomalies. The parallel coordinates plot
depicts the co-occurrence among multiple properties, where
the value range distributions of the patterns w.r.t. each property
are encoded with a density map on the axis. The stacked line
chart further provides a compact visualization of the value
ranges of the selected patterns. These scalable visualizations
are combined to organize patterns without severe visual clut-
ters and facilitate the effective exploration of both the overview
and details (the volume and organization challenges).

a) Scatterplot: Analyzing the relationship between pat-
terns is important for pattern grouping, comparison, and anom-
aly detection. A scatterplot is used to display the co-occurrence
patterns, such that similar patterns are naturally grouped
together. This scatterplot provides a concise overview of
pattern relationships with less clutter than parallel coordinates.
The multidimensional scaling (MDS) is used to create the
scatterplot. The distance of patterns i and j is computed with√∑n

k d(ik, jk)2, where n is the number of properties in the
pattern, k denotes property k, and d(ik, jk) is the distance
between the two ranges with regard to property k of pattern i
and j . The Jaccard index and the KL divergence were tested
to calculate the distance. However, distance is regarded as a
constant value by both measures when two ranges are disjoint
regardless of how far the ranges semantically appear. Thus,
a new measure is used. In this new measure, four features
are extracted from each range: lower bound (lb), upper bound
(ub), median (mid), and length (len). All features are nor-

malized into [0, 1] by dividing with the value ranges defined
in Table 1. The range distance of property k is measured
with the Euclidean distance of the pair of ranges, namely,
d(ik, jk) =

√
�lb2 +�ub2 +�mid2 +�len2, where � rep-

resents the difference between two feature values. For those
categorical properties that can be ordered, we assign numeric
values for each category starting from 1 by the cate-
gorical order and compute the range distance based on
these values. For those categorical properties that cannot
be ordered, we map the text descriptions of those cate-
gories to high-dimensional space with word2vec [32], [33].
The word2vec model can generate a high-dimensional vector
for each word considering their semantics in a series of
sentences. The Euclidean distance between two vectors indi-
cates the semantic similarity between two corresponding
words. As such, the distance between the two categories can be
measured. Users can group patterns and highlight anomalies
by brushing the corresponding points with various colors.

b) Parallel coordinates: Co-occurrence patterns can have
a high-level form (Section IV-C2) with more than three proper-
ties involved. Thus, parallel coordinates are used as a uniform
view to display the multidimensional co-occurrence patterns.
Each axis represents a property. The medians of the ranges
are used as the end points of the line segments to connect
the value ranges in various property axes. Considering that
overlaps exist among ranges of the same property, we do not
adopt parallel sets as it is more suitable for categorical and
disjoint data.

The range distribution is displayed with a density map
on its corresponding axis (Fig. 4(f)). A density map is used
instead of other methods, such as histogram, because it con-
sumes less space and compactly shows the density information
of the property value. In each density map, value ranges
are drawn along each coordinate with equal opacity. The
ranges are overlaid and their opacity values are combined to
encode the density (i.e., dark areas indicate that the corre-
sponding values or categories are covered by many ranges).
Fig. 5 (a) shows an example of a pattern and Fig. 5 (c) shows
the corresponding visual representation with tailored parallel
coordinates.

c) Stacked line chart: When a set of patterns are grouped
in the scatterplot, a new row summarizing the pattern group
is automatically generated and attached under the scatterplot
and parallel coordinates. Fig. 4(g) shows one of the three rows
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of the grouped patterns. When a user unfolds a row, the row
is expanded to show a stacked line chart (Fig. 4(h)). In the
chart, the value range for each property is represented by a
fine line s egment. The segments are stacked to compose a
distribution map. Fig. 5(b) shows an example of the chart,
where the left and right endpoints of the line segments denote
the two endpoints of the range.

3) Design Alternatives: In the aforementioned user-centric
design process, we attempted to refine the visual design of
CorVizor iteratively by proposing and evaluating alternatives.
In this section, two design alternatives are discussed to reveal
the rationales behind our design choices in terms of the macro-
and micro-level analyses of co-occurrence patterns.

a) Visualization of patterns in many property
combinations: Instead of organizing property combinations
with a matrix-based CorView, we attempted to maintain the
structure of these combinations with a node-link diagram
(Fig. 6(a)). Each node in the diagram represents a property
combination. The directed edges in the diagram indicate the
composition of subsequent combinations. In each node lies
a glyph, which encodes the distribution of property value
ranges, and the size of the glyph shows the number of pattern
instances. Moreover, we allow users to apply filters to keep
the desired combinations by selecting properties on the top.
Although such an alternative clearly reveals the inherent
structure of property combinations, three major weaknesses
prohibit it from being applied in our system, that is, a) the
proposed node-link diagram costs excessive screen space; b)
the crossing edges introduce serious visual clutters and are
thus not scalable; and c) the distributions of property value
ranges in different nodes are difficult to compare because
they are not aligned. Hence, we decided to adopt a compact
matrix-based view and facilitate the comparison between
properties with alignment.

b) Visualization of patterns of a property
combination: To help analysts grasp the similarity among
massive co-occurrence patterns, we initially projected
these patterns into a 2D view via dimensional reduction
techniques. Inspired by Liu et al. [28], we attempted to
depict these patterns with glyphs embedded directly into the
view (Fig. 6(b)). On the edge of the glyph lies a circular
histogram that encodes the temporal pattern distribution of
a single pattern, and the properties involved in the pattern
are represented by homocentric donut charts. However,
such an approach is not scalable with the number of
patterns. The value ranges encoded with radians can also be
misleading. Hence, we iterated our design by dissecting the
high-dimensional information in these patterns with multiple
coordinated views as described previously.

C. StatView

Although CorView shows the property combinations and
their co-occurrence patterns, the value range distribution
aggregated by properties remains unavailable. This informa-
tion is essential for high-level exploration. Thus, StatView is
used to display the pattern distribution of each property (Fig. 4)
(R2). This pattern distribution comprises small multiples that
display the distributions of the value ranges for the properties.

Fig. 6. Design Alternatives for CorView. (a) Node-link visualization for
many property combinations; (b) Glyph-based visualization for co-occurrence
patterns.

An individual plot of a property displays a value distribution
in a line chart (upper part) and presents a range distribution
in a stacked rectangle chart (lower part). Both parts have their
counterparts in CorView. The upper and lower parts corre-
spond to the density map and stacked line chart, respectively.

StatView uses a line chart to encode the density distrib-
ution of the values or categories of each property. Position
information is considered perceptually effective in encoding
magnitude [36]. Moreover, StatView has more space to display
the distribution information. Thus, we utilize position rather
than luminance to encode the distribution information. The
same value or category ranges are aggregated, and a rectangle
is used to represent each unique range in the stacked rectangle
chart. The height of a rectangle represents the number of
occurrences of the associated range.

Users can brush a span of the property value on the
horizontal axis of any line chart to perform filtering. Other
views can be subsequently updated. StatView supports three
types of filtering interactions: a) removing the patterns that
overlap with the selected value ranges; b) showing only the
patterns that overlap with the selected value ranges; and c)
showing only the patterns that are strictly inside the selected
value ranges.

D. STView

STView allows users to gain insights into the spatiotemporal
trends of the patterns (R4). The bottom of the view shows a
histogram to visualize the temporal distributions of pattern
instances with multiple scales. Users can easily select patterns
by brushing a temporal window (Fig 4(j)). When the patterns
are grouped in CorView, the histogram shows the temporal
distributions of pattern instances of different groups by using
stacked bars. The top of the view shows the spatial distribution
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of the pattern instances on a map. In this study, we use air
quality data as the target data source. Each air quality station
is represented by a donut chart whose radius encodes the total
number of pattern instances in this location. The sectors in
different colors indicate the ratios of the pattern instances of
each group selected from CorView in each location. Donut
charts are used instead of pie charts because the former has a
blank center. Users can see through it to observe the details.

When a user hovers his or her mouse on a glyph, a circle
around the glyph is displayed to show the coverage of the
associated station, namely, the size of the spatial window used
in the mining model. The circle covers the spatial area whose
co-occurring instances can be viewed as being co-located with
the air quality station. Users can select several stations to see
the related co-occurrence patterns in other views.

E. PatTable

PatTable is a table-like component that allows users to
inspect raw patterns directly on demand. Each row represents
a property combination. The combinations can be unfolded to
show the corresponding patterns. Detailed information for each
individual pattern, such as the number of instances and the
co-occurring property value ranges, is depicted in the unfolded
view. Moreover, PatTable is coordinated with CorView, where
user interactions in one view are reflected in the other view.

F. User Interactions

CorVizor supports various basic and advanced interactions.

� Showing overview first and details on demand.
CorView shows a succinct overview of all property
combinations. Users can click on a row to explore the
corresponding property combination in detail.

� Brushing and filtering. Users are allowed to group
patterns or spot anomalies by brushing the patterns with
colors in a scatterplot in CorView. Users can filter by
spatial area, time range, and property value range in
STView and StatView.

� Changing the model parameters. Users can change
the parameters including the spatiotemporal threshold
and minimum co-occurrence coverage (Fig. 10(a)) and
see new results (R5). The histogram (Fig. 10(b)) shows
the distribution of the normalized range widths of all
co-occurrence patterns.

VI. EXPERIMENTS

This section presents model evaluation, case studies, and
expert interview to evaluate the effectiveness and usability
of the proposed system. The experimental data contain the
16 data properties from the three data sources listed in Table I
in Section III-A. The data were collected from a large city.
Data collection was conducted from February 1 to May 31
in 2014. Weather data were collected hourly from 20 weather
monitoring stations around the city. Air quality data were
collected hourly from 36 air quality monitoring stations in the
city, and traffic data were collected from 100, 215 segments
of the city road network every half hour from a geospatial

Fig. 7. Comparison of the time performances of the proposed sweep-line
algorithm and naive mining method.

mapping platform. To sum up, there are 103 thousand records
in the air quality data, 57 thousand records in the weather
data, and 577,238 thousand records in the traffic data. All
experiments were evaluated on a laptop running Windows 10
with Intel Core i7 3.4GHz CPU, 256GB SSD drive, and
16 GB RAM.

A. Model Evaluation

The proposed sweep-line algorithm is the core component
of our pattern mining model. We compared it with a naive
approach to demonstrate its performance over the baseline.

1) Naive Approach: The naive method to identify distinctive
rectangles from a value matrix follows the following steps.
First, every cell in the matrix is scanned. Second, if a qualified
cell (fulfilling the co-occurrence coverage requirement) is
identified, the naive approach considers the cell the left-up
corner of certain distinctive rectangles and traverses toward
right and down directions to find the rectangles as candi-
dates. Third, each candidate rectangle is tested to see if it is
completely covered by other rectangles identified previously.
If overlapping cases exist, the candidate rectangle is discarded.
Otherwise, the identified rectangle is inserted into the result
set. The cost of the approach is prohibitively high. Assuming
that an M×N matrix exists, the approach needs to traverse the
entire matrix to identify qualified cells in the outer iteration.
For each qualified cell, the approach needs to traverse the
remainder of the matrix to identify the distinctive rectangles
and test their qualification, which may result in O(M2 N2) in
the worst case. In contrast, our method has the time complexity
of O(M N) as we only need to scan the matrix once.

The comparison was performed with the varying
co-occurrence coverage, spatial window, and temporal
window. Fig. 7 shows the results of the time performance
comparison.

a) Temporal window: Fig. 7(a) shows that the time of
both approaches increases with the increase in the tempo-
ral window. A large temporal window usually generates a
large value range, which increases the probability of finding
qualified cells in the value matrix. The sweep-line algorithm
outperforms the naive approach, given that a number of
redundant cell examinations are avoided during the process.

b) Spatial window: Fig. 7(b) provides two observations.
First, with a large spatial window, the processing time of
both approaches increase because many co-related instances
are to be analyzed in a spatiotemporal partition. Second,
the processing time of our approach is lower than that of the
naive approach, since the naive approach needs to examine
more qualified cells and thus incurs more computational time.
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Fig. 8. Selecting proper parameters: (a) histograms showing the distribu-
tion of the normalized range widths and (b) statistical information for the
co-occurrence coverage thresholds 0.5%, 1% and 3% in StatView.

c) Co-occurrence coverage: Fig. 7(c) presents two obser-
vations. First, the processing time of both approaches
decreases. Second, the sweep-line algorithm performs better
than the naive one because a large co-occurrence coverage
value results in a small chance of finding a qualified cell (i.e.,
qualified patterns) in the value matrix.

B. Case Studies

The case studies were conducted with the domain experts
to evaluate the effectiveness of our system.

1) Macro Analysis (Co-Occurrences Relevant to High SO2):
This case study demonstrated the effectiveness of CorVizor
for the macro-level analysis (detailed in Section V-A).

Selecting proper mining parameters was the first step to
explore the co-occurrence patterns. The domain experts sug-
gested 5 km and 4 hours for spatial and temporal window
based on their experience. However, the co-occurrence cover-
age threshold is difficult to choose. The experts attempted the
thresholds 0.5%, 1%, and 3%. The distributions of the normal-
ized range widths generated by these thresholds are presented
in Fig. 8(a), and the associated statistical information on the
extracted patterns is depicted in StatView (Fig. 8(b)). Based
on their observations, the experts selected 1% as the threshold
because: a) although the histograms generated by the thresh-
olds 0.5% and 1% seemed similar, the patterns represented
as stacked rectangles in StatView with the threshold 1% were
more organized and meaningful than those with 0.5%; and b)
the patterns extracted with the threshold 3% was too coarse to
reveal any useful insights. Thus, the threshold 1% (Fig. 10(a))
was selected by the experts for further explorations.

Urban air pollution, which is crucially related to the
well-being of city residents, has attracted increasing concerns
in recent years. Therefore, the experts attempted to identify
the co-occurrence between air quality and other urban data
sources with CorVizor. In particular, they were interested in the
co-occurrence patterns relevant to high SO2 because SO2 was
one of the major pollutants produced by human activities in

Fig. 9. Macro-level analysis of the co-occurrence patterns that are relevant
to high SO2.

cities. Hence, the experts selected the patterns that comprised
high SO2 in StatView. Fig. 9(b) showed that low traffic volume
strongly co-occurred with high SO2 because the bars in the
range distribution view of traffic volume indicated that the
corresponding value ranges were relatively low and narrow.

These findings seemed contradicted with the experts’ intu-
ition, as they believed that only huge traffic volume would
result in severe air pollutant emission. Hence, they selected
traffic volume and SO2 in CorView for further exploration
(Fig. 9(c)). Only the property combinations that involved these
two selected properties remained in the view. The glyphs in
the first row (Fig. 9(d) and 9(e)) validated the aforemen-
tioned observation with StatView. By analyzing other rows,
the experts discovered that the number of low-speed vehicles
(Fig. 9(f)) was considerably larger than that of high-speed
vehicles (Fig. 9(g)) while the traffic volume (Fig. 9(h)) was
low and SO2 (Fig. 9(i)) was high. Thus, the experts suggested
that the large number of slow vehicles and small traffic volume
could be a sign of potential traffic congestions, which resulted
in the high SO2 emission. The co-occurrence patterns among
traffic volume, low-speed vehicles, and AQI level were also
explored with the identical approach. The result was similar:
the air quality appeared to be bad with small traffic volume
and the large number of slow vehicles. This insight confirmed
that the small traffic volume co-occurred with severe traffic
congestions, which were a significant contributing factor,
confirmed by the experts, to the deteriorated urban air quality.

2) Micro Analysis (Co-Occurrences Involving Air
Pollution): The second case study demonstrates the
usefulness of the system in analyzing the co-occurrence
patterns associated with a specific property combination.

Road space rationing policies were widely adopted by
governments to alleviate serious air pollution. However,
the experts doubted the effectiveness of these policies. Hence,
they would like to analyze the co-occurrences between traffic
and air pollution with our system. The combination of the
property “Low Speed (%)” and “PM10” in CorView were
selected in this study The corresponding row was expanded to
show its details for an in-depth exploration. Patterns that were
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Fig. 10. Micro-level analysis of co-occurrence patterns between traffic congestion and air pollution.

extremely general were filtered out by brushing the histogram
of the normalized range width (Fig. 10(b)). The patterns in the
scatterplot under the expanded row were grouped in different
colors based on the closeness of the patterns in the plot
(Fig. 10(c)). The parallel coordinates were colored accordingly
(Fig. 10(d)). The red group is considerably different from the
blue and green groups in parallel coordinates (Fig. 10(d)).
The red group represents “less low speed (%) and high
PM10,” whereas the blue and green groups indicate “more
low speed (%) and high PM10.”

The experts were particularly interested in the red pattern
group. The stacked line chart of the group in Figs. 10(f)
and 10(g) also indicates “less low speed (%) (i.e., traffic
congestion is unlikely to occur) and high PM10.” STView was
used to examine the spatiotemporal distribution of the patterns
of the selected groups (Fig. 10(e)). To experts’ suprise, the red
group only occurred in the area between Rings 5 and 6 of the
expressways, which is the suburban area of the city. One expert
indicated that there were several garbage incineration plants
in this area. Comparison between the distribution of the red
group patterns (Fig. 10(h)) and that of the garbage incinerators
(Fig. 10(i)) showed a clear match. They speculated that the
number of garbage incinerators could frequently co-occur with
the high PM10 in the area, in which traffic congestion did
not occur. Further investigation and analysis in the field were
required to verify this conjecture and determine its plausible
cause.

Furthermore, CorVizor was used to explore the
co-occurrence patterns involving air quality index (AQI),
which would increase as air quality worsens. The experts
were curious about the reasons behind the worst air quality
represented by the highest AQI level with the value of 5.
Thus, they drew a selection on the AQI property in StatView
(Fig. 11(a)) to select the patterns that involved the highest AQI
level. From STView, the experts observed that most of these
patterns occurred around February and March (Fig. 11(b)).
They suggested that air pollution might be caused by coal
heating in the winter, which emitted massive pollutants
and severely deteriorated the air quality. To confirm this
hypothesis, the experts selected the temperature and AQI

Fig. 11. Micro-level analysis of co-occurrence patterns between temperature
and air quality index (AQI).

properties in CorView (Fig. 11(c)) and discovered that
the highest AQI level co-occurred with low temperature.
Moreover, the temporal distribution of these selected
co-occurrence patterns was identical to that of the patterns
involving the highest AQI level (Fig. 11(d)). The temperature
ranges in PatTable were around 0 ◦C (Fig. 11(e)), which also
provided useful hints for this co-occurrence. Furthermore,
the experts attempted to verify the co-occurrence by selecting
the patterns with low temperature in StatView. They were
satisfied to discover that these patterns all co-occurred with
medium and high AQI levels (Fig. 11(f)). These observations
supported the experts’ hypothesis and helped them link the
deteriorating air quality with coal heating.

In this case study, the co-occurrence patterns involving
both numerical and categorical properties were explored and
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analyzed in detail. These detailed exploration and analysis
demonstrate the effectiveness of CorVizor in handling the
micro-level analysis tasks and providing interesting insights
into the co-occurrence patterns for further verification and
analysis.

C. Interview With Domain Experts

After the case studies, we collected and summarized the
feedback from the experts as follows.

1) Overall System Usability: CorVizor was well received
by the experts. They were pleased to explore and analyze the
massive heterogeneous patterns intuitively with the proposed
interactive visualizations. “The visualization system makes the
co-occurrence patterns produced by the data mining model
much more meaningful,” an expert said. Both experts acknowl-
edged that the analytical workflow of our system could help
them gain considerable insights into the spatiotemporal co-
occurrences. Moreover, they believed that our system could
be extended to identify interesting co-occurrences in various
scenarios, such as business location selection and travel rec-
ommendation.

2) Visual Design and Interactions: Both the experts were
impressed by the visual design and interactions. They praised
CorView, which presents the co-occurrences among vari-
ous data properties explicitly. An expert commented “the
matrix-like layout is familiar to me and the hierarchical
visualization method well organizes the exploration process.”
He was also highly satisfied with the intuitive visual summary
of the co-occurrence patterns provided in CorVizor. Another
expert was deeply impressed by the spatiotemporal view.
“Without this system, it would be impossible to discover
interesting cases related to the spatiotemporal distribution of
the co-occurrence patterns,” he said. Both experts appreciated
the interactive features of the proposed system. They especially
appreciated the usefulness of filtering and brushing. The
experts said that these techniques help in anomaly detection
and pattern grouping and comparison.

3) Suggestion: The usability of our system was confirmed
by the experts, who immediately became familiar with the
system after a brief training. Nevertheless, they suggested that
the design of our system could be simplified further, such as
by replacing the scatterplot and parallel coordinate plot with
a plain list with numbers and figures, and integrates visual
guides to allow average users, such as government officials,
to monitor the city dynamics and grasp interesting insights
conveniently. We will leave this simplified version of our
system as a part of our future work.

VII. DISCUSSION

In this section, we discuss the implications, limitations, and
generalization of the proposed system.

A. Implications

CorVizor can identify interesting co-occurrence patterns
that may facilitate numerous transportation applications, such
as traffic management and transportation planning. Impor-
tant insights revealed by these patterns, including how the

traffic speed and volume in a local area affect the con-
centrations of air pollutants, provide strong decision-making
contexts for urban planners to establish informed road policies
and long-term planning strategies in advance. Nevertheless,
co-occurrences do not necessarily imply causation. Analysts
may not be able to come up with a clear actionable plan
with only co-occurrences, and inferring causal relationships
remains a challenge. However, the present work still has
several important implications with regard to causal inference.
First, pattern co-occurrences can reduce the search space
of causal inference. Second, the special characteristics of
pattern co-occurrences can have significant implications for
research on causal inference. Moreover, with CorVizor, data
mining researchers can easily obtain an intuitive overview of
a large number of co-occurrence patterns while checking the
credibility of any specific co-occurrence pattern or group of
co-occurrence patterns. As such, researchers can be informed
of imperfections of the data mining model, consequently
inspiring them to enhance the model’s effectiveness.

B. Limitations

The time performance of the co-occurrence mining frame-
work is not highly optimized. Running the model for our
experimental dataset usually requires nearly an hour. Data
mining results for possible parameter combinations were com-
puted in advance to support the interactive adjustment of the
model results. We plan to optimize the model and adapt it
to a high-performance distributed computing platform, such
that the interactive adjustment of the model setting is made
possible. As for the design part of our system, MDS adopted
by the scatterplot is widely used in the visualization literature,
but it may be misleading at times [42]. To enhance the
scatterplot, the method for visualizing dimensionally-reduced
data [42] can be further incorporated into our system.

C. Generalization

CorVizor can be directly applied to various urban analysis
applications, such as urban planning, pollution diagnoses, and
location selection, to detect and understand the co-occurrence
patterns in spatiotemporal datasets that support effective
decision-making processes. The case studies we presented
were conducted for pollution diagnosis. However, the tar-
get data source can be changed to identify other interest-
ing co-occurrences in other domains. For example, traffic
congestion [13], [47], [49] can be analyzed efficiently by
setting traffic data as the target. In addition, the evolution
of business is closely related to many latent co-occurrence
patterns extracted from various urban datasets [44], which can
also be captured by our framework.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied the extraction and interpretation
of fine-grained spatiotemporal co-occurrence patterns that
comprise various properties of different types, scales, and
semantics. Based on the proposed data mining framework and
interactive multi-scale visualization technique, we developed
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CorVizor, a visual analytics system that assists users in explor-
ing these patterns. This study contributes an important step
towards the in-depth understanding of urban dynamics formed
by the complex co-occurrence patterns extracted from hetero-
geneous spatiotemporal data sources, including transportation
data.

We will continue on improving our system in several ways
as follows. First, we plan to develop the deep learning algo-
rithm [61] for mining co-occurrence patterns and migrate the
mining module to a high-performance distributed computing
platform. Users can directly interact with the model and see the
results instantly in CorVizor. Second, we will deploy CorVizor
in the field, such that the streaming datasets collected from
diverse sources can be fed into the system in real-time, thereby
enabling a proactive analysis workflow of the urban problems.
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